Jurkat-Lucia™ NFAT-CD28 Cells
-
Cat.code:
jktl-nfat-cd28
- Documents
ABOUT
NFAT reporter Jurkat T cell expressing CD28
Jurkat-Lucia™ NFAT-CD28 cells were engineered from the human T lymphocyte Jurkat cell line and specifically designed to establish the full activation of T cells. The current paradigm is that this requires at least 2 signals via the T cell receptor (TCR), CD3, and CD28 upon contact with antigen-presenting cells [1,2].
Description:
These cells were derived from the Jurkat-Lucia™ NFAT cell line, which is deficient for the cluster of differentiation 28 (CD28). The Jurkat-Lucia™ NFAT-CD28 cell line was generated by the stable expression of CD28 to establish the full T cell activation. They feature an NFAT-inducible Lucia luciferase reporter gene. The subsequent NFAT activation is readily assessable in the supernatant using QUANTI-Luc™ 4 Lucia/Gaussia, a detection reagent.
In Jurkat-Lucia™ NFAT-CD28 cells, antibody-mediated cross-linking of both receptors CD3 and CD28 strongly enhances the NFAT translocation and subsequent NFAT-dependent Lucia activation, when compared to using an anti-CD3 antibody alone (see figure).
Key features
- Endogenous CD3, TCR, and NFAT expression
- Stable CD28 expression
- Readily assessable NFAT activation by assessing the Lucia luciferase reporter activity
Applications
- Screening for novel anti-CD28 and anti-CD3 monoclonal antibodies (mAbs)
- Screening of novel agonists and antagonists of CD28
- Screening of NFAT targeting drug candidates
References:
1. Budd R.C. & Fortner K.A., 2017. Chapter 12 - T Lymphocytes. Kelley and Firestein's Textbook of Rheumatology (Tenth Edition). pages 189-206.
2. Smith-Garvin J.E. et al., 2009. T Cell Activation. Ann. Rev. Immunol. 27:591-619.
Disclaimer: These cells are for internal research use only and are covered by a Limited Use License (See Terms and Conditions). Additional rights may be available.
SPECIFICATIONS
Specifications
Detection and quantification of NFAT activation
Complete IMDM (see TDS)
Validated using Plasmotest™
Each lot is functionally tested and validated.
CONTENTS
Contents
-
Product:Jurkat-Lucia™ NFAT-CD28 Cells
-
Cat code:jktl-nfat-cd28
-
Quantity:3-7 x 10^6 cells
- 1 ml of Blasticidin (10 mg/ml)
- 1 ml of Zeocin® (100 mg/ml)
- 1 ml of Normocin™ (50 mg/ml).
- 1 tube of QUANTI-Luc™ 4 Reagent
Shipping & Storage
- Shipping method: Dry ice
- Liquid nitrogen vapor
- Upon receipt, store immediately in liquid nitrogen vapor. Do not store cell vials at -80°C.
Storage:
Caution:
Details
The current paradigm is that full activation of T cells requires at least two signals upon contact with APCs [1, 2]. Signal 1 is delivered through the interaction of the TCR and a specific antigenic peptide associated with an MHC (major histocompatibility complex) molecule on APCs. Signal 2 is delivered through the interaction of CD28, the prototypical T cell co-stimulatory molecule, and its ligands, CD80 or CD86, expressed by the APC.
Signal 1: TCR and [HLA::peptide]
The 'classical' and most represented TCR is an 80 to 90 kDa heterodimer composed of one α chain and one β chain. The αβTCR is a transmembrane protein expressed by developing and mature T cells. It features an extracellular ligand-binding pocket and a short cytoplasmic tail. Each αβTCR is restricted to a specific complex made of an antigenic peptide and a class I or class II MHC molecule. Human MHC molecules are also known as HLA (human leukocyte antigen). Because of its short cytoplasmic tail, the TCR, once engaged, lacks the ability to signal and requires non-covalent association with the CD3 to trigger downstream intracellular signaling and T cell activation [1, 2]. Importantly, signal 1 without co-stimulation results in T cell unresponsiveness or 'anergy', a tolerance mechanism that guards against premature activation.
Signal 2: CD28 and CD80/86
CD28 is a homodimeric and transmembrane protein expressed by T cells. Nearly all human CD4+ T cells and 50% of human CD8+ T cells express CD28. The CD28 interaction with CD80 (aka B7-1) or CD86 (aka B7-2) on APCs, in conjunction with TCR engagement, triggers a co-stimulation signal (signal 2). It results in T cell proliferation, cytokine production, cell survival and cellular metabolism [1, 2].
NFAT activation:
Most NFAT proteins are controlled by calcium influx upon TCR stimulation. Calcium binds calmodulin, which in turn activates calcineurin, a calmodulin-dependent phosphatase. Calcineurin dephosphorylates NFAT proteins, leading to their translocation into the nucleus, where they regulate the expression of many genes, either alone or in cooperation with other transcription factors [3, 4]. The co-engagement of CD28 triggers the activation of the AKT kinase, which contributes to enhancing NFAT translocation into the nucleus [4].
References:
1. Budd R.C. & Fortner K.A., 2017. Chapter 12 - T Lymphocytes. Kelley and Firestein's Textbook of Rheumatology (Tenth Edition). pages 189-206.
2. Smith-Garvin J.E. et al., 2009. T Cell Activation. Ann. Rev. Immunol. 27:591-619.
3. Lee J-U., et al., 2018. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol. DOI: 10.3389/fimmu.2018.02747.
4. Macian F., 2005. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 5(6):472-484.
DOCUMENTS
Documents
Technical Data Sheet
Safety Data Sheet
Validation Data Sheet
Certificate of analysis
Need a CoA ?