Human TLR2 Dual Reporter HEK 293 Cells

NF-κB-SEAP & KI-[IL-8]-Lucia reporter cells

ABOUT

NF-κB–SEAP and IL-8–Lucia reporter HEK293 cells expressing human TLR2

InvivoGen offers a human embryonic kidney 293 (HEK293)-derived cell line, specifically designed to assess the distinct role of the human Toll-like receptor 2 (hTLR2):

— HEK-Blue-Lucia™ hTLR2 cells*

These cells were generated from the HEK-Blue-Lucia™ Null​ cell line harboring two inducible reporter genes. This feature allows the double readout of the NF-κB/AP-1 pathway, by monitoring the SEAP (secreted embryonic alkaline phosphatase) or Lucia luciferase activities. HEK-Blue-Lucia™ hTLR2 cells also stably express the hTLR2 and CD14 genes. Due to a triple knockout (KO) of TLR3, TLR5, and TNFR, this cell line allows for the independent study of TLR2.

 

Stimulation of HEK-Blue-Lucia™ hTLR2 cells with TLR2 agonists (e.g. Pam3CSK4) triggers the activation of the artificial NF-κB-inducible promoter and the subsequent production of SEAP. It also promotes the expression of Lucia luciferase, which is knocked in (KI) downstream of the endogenous (more physiological) IL-8 promoter (see figures).

IL-8 (interleukin 8) is a chemokine produced in response to TLR agonists in an NF-κB/AP-1-dependent manner [1-2]. This feature enables the double readout study of the NF-κB/AP-1 pathway, by monitoring the activity of SEAP and Lucia luciferase using QUANTI-Blue™ Solution (SEAP detection reagent) or QUANTI-Luc™ 4 Lucia/Gaussia (luciferase detection reagent), respectively. Thus, you may choose the readout depending on your laboratory equipment utilizing a spectrophotometer for SEAP or a luminometer for Lucia luciferase detection.
 

TLR2 is an important pattern recognition receptor (PRR) detecting a large spectrum of microbial pathogen-associated molecular patterns (PAMPs) from Gram-positive and Gram-negative bacteria as well as fungi, parasites, and viruses [3].

 

Read our review Read our review on TLR2

 

Key features:

  • Stable overexpression of hTLR2 and CD14
  • Verified KO for the TLR3, TLR5, and TNFR genes
  • Functionally validated using a selection of PRR ligands and cytokines
  • Readily assessable NF-κB activation by assessing the SEAP and/or Lucia luciferase activities

Applications:

  • Defining the role of TLR2-dependent NF-κB signaling pathway
  • Screening for novel TLR2 agonists and inhibitors
  • Choice of readout depending on the laboratory equipment (spectrophotometer for SEAP or luminometer for Lucia luciferase detection).

 

*Note: This cell line has been renamed. It was formerly known as "HEK-Dual™ hTLR2 (NF/IL8)". The cat. code (hkd-htlr2ni) remains unchanged.

 

References:

1. Roebuck KA. 1999. Regulation of interleukin-8 gene expression. J Interferon Cytokine Res:429-38.
2. Ohta K, et al. 2014. Toll-like receptor (TLR) expression and TLR‑mediated interleukin-8 production by human submandibular gland epithelial cells. Mol Med Rep. (5):2377-82.
3. Oliveira-Nascimento, L. et al. 2012. The Role of TLR2 in Infection and Immunity. Front Immunol 3, 79.

Disclaimer:  These cells are for internal research use only and are covered by a Limited Use License (See Terms and Conditions). Additional rights may be available.

SPECIFICATIONS

Specifications

Species
Human
Target

TLR2

Target species

Human

Tested applications

Screening of PRR agonists or inhibitors

Cell type
Epithelial
Growth properties
Adherent
Tissue origin
Human embryonic kidney cells
Reporter gene
SEAP
Lucia®
Detection method
Colorimetric (SEAP), Bioluminescence (Lucia)
Antibiotic resistance
Zeocin®
Blasticidin
Hygromycin
Growth medium

Complete DMEM (see TDS)

Mycoplasma-free

Verified using Plasmotest™

Quality control

Each lot is functionally tested and validated.

CONTENTS

Contents

  • Product: 
    HEK-Blue-Lucia™ hTLR2 Cells
  • Cat code: 
    hkd-htlr2ni
  • Quantity: 
    3-7 x 10^6 cells
Includes:
  • 1 ml of Hygromycin B Gold (100 mg/ml)
  • 1 ml of Zeocin® (100mg/ml)
  • 1 ml of Normocin™ (50 mg/ml)
  • 1 ml of QB reagent and 1 ml of QB buffer (sufficient to prepare 100 ml of QUANTI-Blue™ Solution, a SEAP detection reagent)
  • 1 tube of QUANTI-Luc™ 4 Reagent, a Lucia luciferase detection reagent (sufficient to prepare 25 ml)

Shipping & Storage

  • Shipping method:  Dry ice
  • Storage:

    • Liquid nitrogen vapor
    Stability: 20 passages

Details

Toll-like receptor 2 (TLR2) plays an essential role in detecting a diverse range of microbial pathogen-associated molecular patterns (PAMPs) from Gram-positive and Gram-negative bacteria as well as fungi, parasites, and viruses. These PAMPs include cell-wall components such as lipoproteins, lipoteichoic acid (LTA; Gram-positive bacteria only), lipoarabinomannan (mycobacteria only), and zymosan (yeast) [1]. TLR2 forms a heterodimer on the cell surface, crucial for signaling and ligand specificity, with co-receptors TLR1 or TLR6. For example, TLR2-TLR1 and TLR2-TLR6 heterodimers are known to bind specific lipoproteins depending on whether they are tri- or diacylated, respectively [2, 3]. Moreover, ligand recognition is enhanced by its non-specific delivery to TLR2 by CD14, and sometimes in combination with additional ligand-specific molecules such as CD36 and Dectin-1 [4, 5].

Upon ligand recognition, TLR2-dependent signaling cascades ultimately lead to a MyD88 and MAL/TIRAP-dependent activation of pro-inflammatory transcription factors such as NF-κB and AP-1 [6]. Additionally, the PI3K/Akt pathway may also be activated leading to the production of anti-inflammatory cytokines [7]. Interestingly, microarray data generated by InvivoGen clearly highlights that downstream effects differ depending on whether it’s the TLR2-TLR1 or TLR2-TLR6 heterodimer that is activated upon ligand recognition.

 

References:

1. Oliveira-Nascimento, L. et al. 2012. The Role of TLR2 in Infection and Immunity. Front Immunol 3, 79.
2. Takeuchi, O. et al. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13, 933-940.
3. Takeuchi, O. et al. 2002. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169, 10-14.
4. Jimenez-Dalmaroni, M.J. et al. 2009. Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2. PLoS One 4, e7411.
5. Lotz, S. et al. 2004. Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J Leukoc Biol 75, 467-477.
6. Piao, W. et al. 2016. Differential adapter recruitment by TLR2 co-receptors. Pathog Dis 74.
7. Santos-Sierra, S. et al. 2009. Mal connects TLR2 to PI3Kinase activation and phagocyte polarization. EMBO J 28, 2018-2027.

DOCUMENTS

Documents

HEK-Blue-Lucia™ hTLR2 Cells

Technical Data Sheet

Validation Data Sheet

Safety Data Sheet

Certificate of analysis

Need a CoA ?

CUSTOMER SERVICE & TECHNICAL SUPPORT

Question about this product ?