SARS-CoV-2 Spike expressing HEK293 cells

HEK293 SARS-CoV-2 Spike-expressing Cells

ABOUT

SARS-CoV-2 Spike (D614)-expressing 293 cells

InvivoGen offers human embryonic kidney (HEK)-293-derived cells, specifically designed for COVID-19 studies:

• 293-SARS2-S Cells: with a functional furin cleavage site and recommended for cell-cell fusion assays with ACE2-expressing cells.

• 293-SARS2-S-dfur Cells: with an inactive furin (dfur) cleavage site facilitating improved surface expression and detection for flow cytometry.

 

They have been engineered to overexpress the original Wuhan‑Hu-1 SARS‑CoV-2 Spike (S) gene, and for optimal expression, the C‑terminal ER-retention signal has been removed [1,2]. Importantly, the Spike protein contains a furin cleavage site that can affect its cellular expression [3].

More More details

 

A crucial step in developing successful COVID-19 treatments is the validation of their efficacy using rapid, reliable and robust platforms. To this end, cell-based assays using Spike-expressing cells provide a more relevant in vivo biological context than biochemical assays (e.g. ELISAs).

 

Key Features

  • Stable expression of the original SARS-CoV-2 Spike (D614) protein.
  • Functionally validated in cell fusion assays with HEK-Blue™ hACE2(-TMPRSS2) Cells (293-SARS2-S Cells) and by flow cytometry (293-SARS2-S-dfur Cells).

Applications

  • 293-SARS2-S-dfur Cells: Screening patient/vaccinated sera and/or monoclonal antibodies against the SARS-CoV-2 Spike by flow cytometry.
  • 293-SARS2-S Cells: Cell fusion assays for screening novel inhibitors of the SARS-CoV-2 Spike-host interaction using InvivoGen's permissive reporter cell lines (HEK-Blue™ hACE2(-TMPRSS2) and A549-Dual™ hACE2-TMPRSS2).

 

Learn more about InvivoGen's tools for cell fusion assays

 

293-SARS2-S-dfur cells have also been generated with the Spike of other variants of concern: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (BA.1).
These cells have been used to compare the activity of anti-SARS-CoV-2 Spike antibodies. See data

 

 

References:

1. Johnson, M.C. et al. 2020. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. J Virol 94.
2. Ou, X. et al. 2020. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620.
3. Coutard, B. et al. 2020. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 176, 104742.

Disclaimer:  These cells are for internal research use only and are covered by a Limited Use License (See Terms and Conditions). Additional rights may be available.

Available upon request

SPECIFICATIONS

Specifications

Species
Human
Tested applications

Cell fusion assays, Flow cytometry

Cell type
Epithelial
Growth properties
Adherent
Tissue origin
Human embryonic kidney cells
Antibiotic resistance
Blasticidin
Growth medium

Complete DMEM (see TDS)

Mycoplasma-free

Verified using Plasmotest™

Quality control

Each lot is functionally tested and validated.

CONTENTS

Contents

  • Product: 
    293-SARS2-S Cells
  • Cat code: 
    293-cov2-s
  • Quantity: 
    3-7 x 10^6 cells
Includes:
  • 1 ml of Blasticidin (10 mg/ml)
  • 1 ml of Normocin™ (50 mg/ml). Normocin™ is a formulation of three antibiotics active against mycoplasmas, bacteria, and fungi.
Notes:

Each cell line is sold separately. See TDS for the exact contents of each cell line.

Shipping & Storage

  • Shipping method:  Dry ice
  • Storage:

    • Liquid nitrogen vapor
    Stability: 20 passages

Details

SARS-CoV-2 Spike

Spike (S) is a structural glycoprotein expressed on the surface of SARS‑CoV-2. It mediates membrane fusion and viral entry into target cells upon binding to the host receptor, ACE2 and host proteolytic cleavage (e.g. TMPRSS2 and furin). The S protein consists of an N-terminal ectodomain, a transmembrane anchor, and a short C-terminal cytoplasmic tail. The ectodomain contains the S1 subunit, which encodes the receptor-binding domain (RBD), a key target in treatment and vaccination strategies against COVID-19, as well as the S2 subunit, needed for membrane fusion. Notably, the C-terminal cytoplasmic tail of the S protein encodes a presumptive endoplasmic reticulum (ER)-retention motif (KxHxx), which has previously been shown to enable the accumulation of SARS-CoV S proteins at the ER-Golgi intermediate compartment (ERGIC) and facilitate their incorporation into new virions.

Learn more about the SARS-CoV-2 Spike protein.

DOCUMENTS

Documents

293-SARS2-S Cells

Technical Data Sheet

Validation Data Sheet

Safety Data Sheet

Certificate of analysis

Need a CoA ?

CUSTOMER SERVICE & TECHNICAL SUPPORT

Question about this product ?