Aluminum salt formulations (referred to as alum) have been used for decades as effective and safe vaccine adjuvants. Alum mostly potentiates IgG1 and IgE production through the promotion of Th2 cell responses. It has long been known that alum causes cell death and the release of numerous molecules that act as damage-associated molecular patterns (DAMPs).

Two of these DAMPs, which are both connected to nucleic acid biology, have been identified. Uric acid [1], which is the end product of the degradation of purines, and host cell DNA [2] have been shown to accumulate at sites of alum injection and to induce T cell responses and the production of IgG1 and IgE. The signaling pathways activated by uric acid in this context have not been identified, nor the cytosolic DNA sensor(s) triggered by host DNA in alum immunization [1, 2]. However, the (STING)-TBK1-IRF3 axis has been shown to control the IgE response [2].

The STING-TBK1-IRF3 axis has also been involved in the adjuvant activity of c-di-GMP. Cyclic-di-GMP is a bacterial signaling molecule with strong immunostimulatory activity, which is currently being investigated as a mucosal adjuvant [3, 4].

Several studies have shown that intranasal immunization with c-di-GMP promotes predominantly Th1 responses, essential for the elimination of intracellular pathogens. Although its adjuvancy mechanism is not yet understood, c-di-GMP is known to activate the innate immune system [3] and induce the production of type I IFNs through STING-TBK1-IRF3 [4], the same signaling pathway used by intracellular DNA. According to a very recent study, c-di-GMP is recognized by the cytosolic DNA sensor DDX41 [7] and not by STING directly, as previously thought [8]. The data suggest that DDX41 binds to c-di-GMP then forms a complex with STING to facilitate downstream signaling and the activation of type IFNs. It is intriguing that the STING-TBK1-IRF3 signaling pathway can promote two distinct Th responses.

REFERENCES

3. Chen W. et al., 2010. The potential of 3',5'-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine. 28(18):3080-5 (review).

INVIVOGEN’S PRODUCTS