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The immune response to SARS-CoV-2 is not yet elucidated. However, 
predictions can be made using studies on SARS-CoV and MERS-CoV.

Upon entry into the alveolar epithelium, the virus is recognized by innate 
immune receptors, such as the RNA sensors TLR7/8 and RIG-I/MDA-5, 
and the inflammasome sensor, NLRP3. This leads to the activation of NF-кB 
and IRF3/7 and the subsequent production of pro-inflammatory cytokines 
(e.g. IL-1β and IL-6) and type I IFNs, respectively. The antiviral activity of 
type I IFNs is essential in limiting the propagation of the virus and is further 
amplified by the expression of a plethora of ISGs such as RNAse L. 
Cytokines released by infected cells modulate the adaptive immune 
response by recruiting and activating immune cells such as macrophages, B 
cells, and T cells to orchestrate the elimination of the virus. However, an 
unbalanced immune response can lead to hyper-inflammation causing some 
of the severe clinical symptoms of COVID-19. 

Predicted immune responses to SARS-CoV-2

The ongoing COVID-19 pandemic is caused by a novel β-coronavirus, named “SARS-CoV-2” by the International Virus Classification Commission. 
Genetic and clinical data are rapidly emerging and suggest strong similarities with two previous highly pathogenic human β-coronaviruses, SARS-
CoV and MERS-CoV. SARS-CoV-2 shares approximately 79% and 50% sequence identity with SARS-CoV and MERS-CoV, respectively [1], similar 
cell entry mechanisms [2], and the propensity to induce hyper inflammation in severe cases [3]. Currently, there is very limited knowledge of the 
host immune response to SARS-CoV-2. However, based on the accumulated clinical and experimental data on these previous viruses, predictions 
can be made on how the host immune system may deal with this virus and how the virus may evade such host responses [4]. 

The first line of defense against viral infection comprises a set of pattern recognition receptors (PRRs), including Toll-like receptors 
(TLRs) and RIG-I-like receptors (RLRs) that recognize the RNA viral genome and its replication intermediates. Evidence suggests that 
upon entry into the alveolar epithelium, the virus is sensed by the endosomal single-stranded (ss)RNA sensor, TLR7/8, and the cytosolic 
double-stranded (ds)RNA sensor, RIG-I/MDA-5. Upon recognition, these sensors recruit the adaptor proteins, MyD88 and MAVS, 
respectively, and induce downstream signaling. Ultimately, this leads to the activation of the transcription factors, IRF3/7 and NF-κB, 
and the subsequent production of type I interferons (IFN-α and IFN-β) and proinflammatory cytokines (e.g. IL-6 and TNF-α), respectively 
[5]. Additionally, the virus is thought to activate the inflammasome sensor, NLRP3, resulting in the secretion of the highly inflammatory 
cytokine IL-1β and the induction of pyroptosis, an inflammatory form of cell death. Indeed, SARS-CoV has previously been shown to induce 
the formation of the NLRP3 inflammasome through the action of viral proteins such as the E and 3a proteins [6,7]. Still, our understanding 
of the viral recognition mechanisms is far from being fully elucidated.
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TYPE I IFN RESPONSE
Induction of the type I IFN response is essential in limiting the 
propagation of the virus within the host during the early phases of 
the disease. Type I IFNs mediate direct antiviral effects that limit 
viral replication and modulate the innate and adaptive immune 
responses. They bind to their receptor, which is expressed on a 
number of different cells including macrophages, and activate the 
JAK/STAT signaling pathway. This signaling leads to the formation 
of the STAT1/2/IRF9 complex and the induction of a plethora of 
IFN-stimulated genes (ISGs), such as the anti-viral enzyme RNAse 
L, and the pro-inflammatory chemokine CXCL10 [8, 9]. 

Many viruses, including SARS-CoV and MERS-CoV, have 
developed multiple strategies to evade the antiviral response 
orchestrated by type I IFNs [10]. These evasion strategies include:

Avoidance: The virus shields itself or its byproducts from host
recognition. SARS-CoV and MERS-CoV hide viral intermediate 
products (e.g. dsRNA) within double-membrane vesicles 
(DMVs) during the replication process [11,12].
Suppression of IFN induction: Viral proteins may actively 
inhibit the host sensor machinery or its downstream signaling 
molecules to prevent the initiation of IFN expression. MERS-
CoV membrane (M) and nsp4a are known to suppress RIG‐I‐
induced activation of IRF3 and MDA-5 activation, respectively 
[13,14]. Furthermore, the viral protease, PLpro, has been 
shown to have deubiquitinase (DUB) activity in the infected 
cell, as well as inhibitory activity against IRF3 activation in both 
SARS-CoV and MERS-CoV [15-17].
Suppression of IFN signaling: Viruses can block the IFN 
signaling cascade directly. SARS-CoV nsp1 and nsp6 have 
been shown to block the phosphorylation of STAT1 and the 
translocation of the STAT1/2/IRF9 complex, respectively, 
preventing the activation of an antiviral state within the infected 
cell and the enhancement of the IFN response [18,19].

Downregulation of the host IFN response, either directly by 
the virus or by other indirect means, can cause an unbalanced 
production of pro-inflammatory cytokines and infiltration of 
inflammatory cells leading to a more severe form of COVID-19.

IMMUNOPATHOLOGY OF SARS-CoV-2
The immunopathology of COVID-19 greatly resembles that seen 
in SARS and MERS infections. Recent studies found that increased 
cytokine levels (e.g. IL-6, IL-10, and TNFα) and lymphopenia 
(significantly reduced CD4+ and CD8+ T cells) correlate with 
disease severity of COVID-19 [3, 20]. In addition to reduced T cell 
counts, the surviving T cells appear dysfunctional [21]. In the more 
severe cases of COVID-19, this dysregulated immune response 
can lead to a cytokine storm, causing increased pulmonary 
pathology and respiratory distress and, a higher risk of poor clinical 
outcomes (e.g. death). Therefore, treatment with antiviral agents 
alone may not be sufficient to stop the devastating cytokine storm 
and pulmonary destruction in these patients. Thus, further studies 
to develop a better understanding of how the virus is recognized 
by the host and which viral factors drive immune dysregulation 
in COVID-19 will provide essential insights to help shape vaccine 
responses towards protective immunity. 
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