

TABLE OF CONTENTS

Introduction STING activity STING agonists STING signaling inhibitors STING regulation Genetic variation in STING Therapeutic targeting of STING Conclusion

InvivoGen

EUROPE 5, rue Jean Rodier F-31400 Toulouse France Tel: +33 (0)5 62 71 69 39 Fax: +33 (0)5 62 71 69 30 info.eu@invivogen.com

USA 10515 Vista Sorrento Parkway San Diego, CA 92121 Tel: +1 888 457 5873 Fax: +1 858 457 5843 info@invivogen.com

ASIA Unit 709A, Bio-Informatics Center 2 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong Tel: +852 3622 3480 Fax: +852 3622 3483 info.hk@invivogen.com

www.invivogen.com

Follow the path to STING

STING (STimulator of INterferon Genes) has become a focal point in immunology research as well as a target in drug discovery. As a signaling hub in innate immunity, STING is a pattern recognition receptor (PRR) of paramount importance in orchestrating the body's response to pathogenic, tumor, or self DNA in the cytoplasm. InvivoGen offers a growing family of products to help you explore STING, its signaling partners, cytokine induction activity and therapeutic potential.

Introduction

Entry of self or foreign nucleic acids into the cytoplasm can signal various problems, including pathogenic infection by incoming microbes, aberrant apoptosis of neighboring cells, mitochondrial or nuclear damage, and the presence of tumors. Until the discovery of STING in 2008, detection of nucleic acids as Pathogen-associated Molecular Patterns (PAMPs) had been largely imputed to Toll Like Receptors (TLRs), a family of PRRs sensing the extracellular milieu or the endosomal lumen¹. STING was first identified as a cytosolic nucleic acid sensor playing an essential role in the induction of type I interferon (IFN) responses and the control of certain viral infections^{2,3}. It was proposed to be an adaptor-like molecule which integrates sensing/downstream signaling of both viral RNA and double-stranded DNA (dsDNA), but its positioning remained unclear for a few years. Indeed, although it was shown that STING is a direct sensor of cytosolic cyclicdinucleotides (CDNs) commonly produced by invading bacteria, its direct interaction with dsDNA could not be demonstrated, suggesting the intervention of at least one additional protein⁴. The identity of the major dsDNA cytosolic sensor was resolved in 2013: the cyclic GMP-AMP synthase (cGAS) is activated upon direct DNA binding and subsequently catalyzes the production of a non-canonical CDN, which in turn, activates STING^{5,6}, STING activation results in a signaling cascade which ultimately leads to recruitment and activation of innate and adaptive immune cells. Briefly, upon binding to a single CDN molecule, activated STING and TANK-binding-kinase-I (TBK1) interact to induce an active interferon regulatory factor (IRF3) dimer which then binds to interferon-stimulated responsive elements (ISRE) in the nucleus and leads to IFN- α/β production⁷. The production of NF- κ Bdependent inflammatory cytokines is also observed downstream of STING activation but the underlying mechanisms remain opaque⁸ (Fig.1). This review addresses different aspects of STING activity and regulation, notably through interaction with other PRRs including DNA sensors, RNA sensors, inflammasomes and TLR7. Finally, various disease conditions favoring a therapeutic targeting of STING are discussed.

Figure 1: The STING signaling pathway

STING activation

Cyclic dinucleotides

The known natural STING agonists correspond to the four naturally occurring CDNs, all of which are based on the nucleosides guanosine (G) and/or adenosine (A). Before the discovery of STING, CDNs had already been reported as bacterial messenger molecules and shown to exhibit anti-microbial⁹, adjuvant¹⁰, pro-DNA-replicative¹¹, anti-cancer¹² and cell cycle-modulatory activities¹³. Among the naturally occurring CDNs, c-di-GMP, c-di-AMP and 3'3'-cGAMP are classified as canonical CDNs and are released into host cells during infection. However, the fourth CDN, 2'3'-cGAMP, is produced by the DNA sensor cyclic GMP-AMP synthase (cGAS) in mammalian cells and is referred to as a non-canonical CDN because of the position of the phosphodiester bonds between the guanosine and adenosine nucleosides^{5,6}. Microbial CDNs contain a (3',5')(3',5') phosphodiester linkage (denoted as 3'3'), whereas the mammalian CDN contains a (2',5')(3',5') linkage (denoted as 2'3').

Chemical structure of 2'3'-cGAMP

Chemical structure of 3'3'-cGAMP

In addition to their utility as research reagents, CDN STING agonists are being pursued as immunotherapy agents. InvivoGen scientists recently developed a novel series of potent, STING-activating CDNs based on the adenosine (A) and inosine (I) nucleosides, the latter of which is not found in natural CDNs¹⁴. The synthetic cAIMP and its difluoro derivatives are analogs of the bacterial 3'3'-cGAMP. The difluoro cAIMP compounds are not only more resistant to enzymatic cleavage but also more potently induce IRF3 and NF- κ B pathways (Fig. 2). Of note, STING activity can be negatively regulated during bacterial infection following binding of bacterial CDNs to other DNA sensors such as DDX41 and the oxidoreductase RECON¹⁵⁻¹⁷.

DMXAA

Discovered in 1991, 5,6-dimethylxanthenone-4-acetic acid (DMXAA; also known as ASA404 or vadimezan) is a synthetic compound and vascular disrupting agent that showed great promise as an oncology drug candidate in murine experiments¹⁸. However, it ultimately failed Phase III clinical trials for non small-cell lung cancer (NSCLC)¹⁹. Interestingly, DMXAA was reported

to be a STING agonist in 2012²⁰, but was later revealed to be a potent agonist of murine STING that is totally inactive towards human STING²¹. This speciesspecific difference accounted for the efficacy of DMXAA in murine models as well as for its clinical

Chemical structure of DMXAA

failure. Efforts are now underway in both industry and academia to create DMXAA analogs that activate human STING. Nevertheless, DMXAA remains a useful research ligand for inducing the STING pathway in murine cell lines and in mice.

Table 1: Reporter cell lines related to cGAS/STING signaling

CELL LINE	PRODUCTS	DESCRIPTION	UNIT SIZE	CAT.CODE
B16	B16-Blue [™] ISG Cells	IRF-SEAP reporter mouse melanoma cells	3-7 x 10 ⁶ cells	bb-ifnabg
	B16-Blue [™] ISG-KO-STING Cells	IRF-SEAP reporter STING knockout cells	3-7 x 10 ⁶ cells	bb-kostg
HEK293	HEK-Blue [™] ISG Cells	IRF-SEAP reporter human embryonic kidney cells	3-7 x 10 ⁶ cells	hkb-isg
	HEK-Blue [™] ISG-KO-STING Cells	IRF-SEAP reporter STING knockout cells	3-7 x 10 ⁶ cells	hkb-kostg
HEK293T	293T-Dual™ hSTING-A162 CellsIRF-SEAP and IFN-β-Lucia reporter cells with A162 human STING		3-7 x 10 ⁶ cells	293d-a162
	293T-Dual™ hSTING-H232 Cells	IRF-SEAP and IFN- β -Lucia reporter cells with H232 human STING	3-7 x 10 ⁶ cells	293d-h232
	293T-Dual™ hSTING-R232 Cells	IRF-SEAP and IFN- β -Lucia reporter cells with R232 human STING	3-7 x 10 ⁶ cells	293d-r232
	293T-Dual™ mSTING Cells	$IRF\text{-}SEAP$ and $IFN\text{-}\beta\text{-}Lucia$ reporter cells with murine STING	3-7 x 10 ⁶ cells	293d-mstg
RAW 264.7	RAW-Lucia [™] ISG Cells	IRF-Lucia reporter cells	3-7 x 10 ⁶ cells	rawl-isg
	RAW-Lucia [™] ISG-KO-cGAS Cells	IRF-Lucia reporter cGAS knockout cells	3-7 x 10 ⁶ cells	rawl-kocgas
	RAW-Lucia [™] ISG-KO-IRF3 Cells	IRF-Lucia reporter IRF3 knockout cells	3-7 x 10 ⁶ cells	rawl-koirf3
	RAW-Lucia [™] ISG-KO-STING Cells	IRF-Lucia reporter STING knockout cells	3-7 x 10 ⁶ cells	rawl-kostg
THP-1 THP1-Dual™ Cells NF-κB-SI		$NF\text{-}\kappaB\text{-}SEAP$ and IRF-Lucia reporter human monocyte cells	3-7 x 10 ⁶ cells	thpd-nfis
	THP1-Dual [™] KO-cGAS Cells	$NF\text{-}\kappaB\text{-}SEAP$ and IRF-Lucia reporter cGAS knockout cells	3-7 x 10 ⁶ cells	thpd-kocgas
	THP1-Dual™ KO-STING Cells	$NF\text{-}\kappaB\text{-}SEAP$ and IRF-Lucia reporter STING knockout cells	3-7 x 10 ⁶ cells	thpd-kostg
	THP1-Dual™ KI-hSTING-A162 Cells	$NF\text{-}\kappaB\text{-}SEAP$ and $IRF\text{-}Lucia$ reporter A162 human STING knockin cells	3-7 x 10 ⁶ cells	thpd-a162
	THP1-Dual™ KI-hSTING-H232 Cells	$NF\text{-}\kappaB\text{-}SEAP$ and IRF-Lucia reporter H232 human STING knockin cells	3-7 x 10 ⁶ cells	thpd-h232
	THP1-Dual™ KI-hSTING-M155 Cells	$\text{NF-}\kappa\text{B-SEAP}$ and IRF-Lucia reporter M155 human STING knockin cells	3-7 x 10 ⁶ cells	thpd-m155
	THP1-Dual™ KI-hSTING-R232 Cells	$NF\text{-}\kappaB\text{-}SEAP$ and IRF-Lucia reporter R232 human STING knockin cells	3-7 x 10 ⁶ cells	thpd-r232
	THP1-Dual™ KI-hSTING-S154 Cells	NF- κ B-SEAP and IRF-Lucia reporter S154 human STING knockin cells	3-7 x 10 ⁶ cells	thpd-s154

STING activation and signaling

In agreement with its central implication in the induction of innate immune responses. STING is found throughout the body, notably in the barrier organs³. It is expressed most strongly in skin endothelial cells, alveolar type 2 pneumocytes, bronchial epithelium and alveolar macrophages^{2,22}. STING-dependent cytokine induction has been evaluated in diverse cell types either ex vivo (in whole blood¹⁴ and in primary cells such as peripheral blood mononuclear cells²³) or in vitro in cell lines (human THP-1 monocytes14,23-25, HEK293 human embryonic kidney cells², RAW murine macrophages^{14,25,26} and B16 murine melanoma²⁵). This is typically done by treating cells with STING agonists and then assaying for production of type I IFNs, TNF- α or other cytokines. STING-dependent cytokine induction can then be confirmed by using STING-KO cells, STING pathway inhibitors, siRNAs or other tools. Notably, STING is either deactivated, undetectable or not expressed in certain cell lines, such as HEK293T and HeLa human cervical cancer^{27,28}. InvivoGen provides numerous human and murine cell lines where the wild-type STING gene has been knocked out or replaced by a STING variant.

Figure 2: Induction of the interferon regulatory factor pathway by various STING ligands in THP1-DualTM cells. IRF induction was determined by measuring the relative light units (RLUs) in a luminometer using QUANTI-LucTM, a Lucia luciferase detection reagent. The IRF induction of each ligand is expressed relative to that of hIFN- β at 1 x 10⁴ U/ml (taken as 100%).

CATEGORY	PRODUCTS	DESCRIPTION	UNIT SIZE	CAT.CODE
cGAMP	3'3'-cGAMP	Cyclic [G(3',5')pA(3',5')p]	500 µg	tlrl-nacga
	3'3'-cGAMP VacciGrade™	Preclinical grade of cyclic $[G(3',5')pA(3',5')p]$	1 mg	vac-nacga
	2'3'-cGAMP	Cyclic [G(2',5')pA(3',5')p]	500 µg	tlrl-nacga23
	2'3'-cGAMP VacciGrade™	Preclinical grade of cyclic $[G(2',5')pA(3',5')p]$	1 mg	vac-nacga23
	2'3'-cGAM(PS)2 (Rp/Sp)	Bisphosphorothioate analog of 2'3'-cGAMP	250 µg	tlrl-nacga2srs
c-di-GMP	c-di-GMP	Cyclic [G(3',5')pG(3',5')p]	1 mg	tlrl-nacdg
	c-di-GMP VacciGrade™	Preclinical grade of cyclic [G(3',5')pG(3',5')p]	1 mg	vac-nacdg
	2'3'-c-di-GMP	Analog of c-di-GMP	500 µg	tlrl-nacdg23
c-di-AMP	c-di-AMP	Cyclic [A(3',5')pA(3',5')p]	1 mg	tlrl-nacda
	c-di-AMP VacciGrade™	Preclinical grade of cyclic [A(3',5')pA(3',5')p]	1 mg	vac-nacda
	2'3'-c-di-AMP	Analog of c-di-AMP	500 µg	tlrl-nacda23
	2'3'-c-di-AM(PS)2 (Rp,Rp)	Bisphosphorothioate analog of 2'3'-c-di-AMP	100 µg	tlrl-nacda2r-01
	2'3'-c-di-AM(PS)2 (Rp,Rp) VacciGrade™	Preclinical grade of bisphosphorothioate analog of 2'3'-c-di-AMP	500 µg	vac-nacda2r
c-AIMP	cAIMP	Cyclic [A(3',5')pI(3',5')p]	500 µg	tlrl-nacai
	cAIMP Difluor	Difluor cyclic [A(3',5')pI(3',5')p]	250 µg	tlrl-nacaidf
	cAIM(PS)2 Difluor (Rp/Sp)	Difluor and bisphosphorothioate analog of cAIMP	100 µg	tlrl-nacairs
Non-CDN	DMXAA	5,6-dimethyl-xanthenone-4-acetic acid	5 mg	tlrl-dmx

Table 2: Cyclic dinucleotides and DMXAA

Inhibition of cGAS/STING signaling

cGAS/STING signaling can be blocked directly or indirectly by endogenous, exogenous and synthetic molecules. Several biotech and pharma companies are developing cGAS or STING antagonists for therapeutic applications, notably in autoimmune disorders associated with type I interferonopathy (excessive production of type I IFNs). Such molecules could mimic pathogenic proteins which impair the STING pathway in order to subvert the immune system and facilitate infection. Examples include dengue virus NS2B protein²⁹, hepatitis B virus polymerase³⁰, herpes simplex virus 1 (HSV-1) ICP27³¹, human cytomegalovirus tegument protein UL82³², influenza A virus fusion protein³³ and Shigella protein IpaJ³⁴. It was shown that STING is also inhibited via direct binding to E1A and E7 viral oncogenes²⁸. Moreover, numerous synthetic molecules can inhibit the cGAS/STING pathway at different points upstream or downstream of STING. For instance, Steinhagen *et al.* showed that oligonucleotides (ODN) containing repetitive TTAGGG motifs, such as ODN A151, act as cGAS competitive inhibitors³⁵. Mukai *et al.* used 2-bromopalmitate, an inhibitor of STING palmitoylation, to block IFN production in HEK293 cells expressing constitutively active STING mutants³⁶. Alternatively, Pokatayev *et al.* used the TBK1 inhibitor BX795 to attenuate cytokine production in mutant mouse embryonic fibroblasts that they employed to model STING dependent autoinflammation³⁷. Chen *et al.* employed SB202190, a p38 MAPK inhibitor, to block STING deubiquitination during HSV-1 viral escape³⁸. Finally, McFarland *et al.* separately tested the NF-κB inhibitors Celastrol, Bay 11-7082 and MG-132 in cellular assays of STING signaling in response to bacterial infection¹⁷.

PRODUCTS	DESCRIPTION	UNIT SIZE	CAT.CODE		
Amlexanox	TBK1/IKKε inhibitor	50 mg	inh-amx		
Bay 11-7082	$I\kappa\text{B-}\alpha$ inhibitor - NLRP3 inflammasome inhibitor	10 mg	tlrl-b82		
BX795	$TBK1/IKK\epsilon$ inhibitor - TLR signaling inhibitor - RLR inhibitor	5 mg	tlrl-bx7		
Celastrol	NF-ĸB inhibitor	1 mg	ant-cls		
MG-132	26S proteasome inhibitor - Autophagy activator	5 mg	tlrl-mg132		
ODN TTAGGG (A151)	cGAS inhibitor - TLR9 inhibitor - AIM2 inhibitor	1 mg	tlrl-ttag151-1		
SB202190	MAP kinase inhibitor - Autophagy inducer	5 mg	tlrl-sb90		

Table 3: Synthetic inhibitors of the cGAS/STING pathway

STING regulation

Although STING is best known for its role in immune responses to cytoplasmic DNA sensed by cGAS, it is also implicated in signaling pathways for other DNA or RNA sensors, autophagy, ER stress and metabolism. Furthermore, STING, like other PRRs, is also regulated through numerous post-translational modifications that ensure its proper location, timing and function (Fig. 3).

DNA pathways

STING has been linked to DNA sensors other than cGAS. There are reports of STING signaling following detection of viral³⁹ or bacterial⁴⁰ DNA by IFI16, and after detection of viral DNA by DDX41⁴¹. Interestingly, STING appears to be regulated by the cytoplasmic DNA sensor AIM2. Corrales et al. reported that in murine macrophages and dendritic cells, the AIM2 inflammasome antagonizes the STING pathway during the response to cytoplasmic DNA, by inducing pyroptosis via caspase 1²³. Along these lines, Liu *et al.* found that during infection of murine macrophages with Mycobacterium bovis, AIM2 conjugates to bacterial DNA in the cytoplasm to inhibit STING-dependent induction of IFN- β and autophagy⁴². STING also seems to be connected to genomic structure and repair mechanisms. For example, Malik *et al.* claimed that STING can induce chromatin compaction, and they suggested that this effect might be linked to immune responses (e.g. antiviral response) or to nuclear envelopelinked diseases⁴³. Interestingly, constitutive activation of the cGAS/ STING pathway in a DNA damage response deficient subtype of breast cancer in a cell cycle-specific manner has been described⁴⁴. These findings are consistent with other reports, which linked STING signaling to the DNA-damage sensor MRE11, and to the DNA replication and repair enzyme RAD51 (via MRE11)^{45,46}. Further research revealed that the Cre/LoxP system of gene recombination leads to accumulation of damaged DNA and ultimately, to STING activation⁴⁷. Other evidence suggests that STING signaling following DNA viral infection is dampened by caspase 1-mediated cleavage of cGAS⁴⁸. Last, cGAS/STING signaling has also been widely described as a response to mitochondrial DNA (mtDNA) that enters the cytoplasm, as occurs during oxidative stress⁴⁹.

RNA pathways

STING appears to interact with RNA sensing pathways at different levels. These interactions can occur directly via RNA sensors such as MDA-5 and RIG-I⁵⁰, and via MAVS⁵¹ a RIG-I activated adaptor

protein. STING may also take part in RNA pathways indirectly, after enzymatic conversion of cytoplasmic DNA into RNA (or vice versa)⁵². Indeed, the efficacy of the RIG-I ligand 5'ppp-dsRNA as protection against HSV-1 infection correlates directly to STING expression levels, indicating the importance of STING in anti-viral RIG-I signaling⁵³. Remarkably, this trend extends to murine models: STING-KO mice treated with 5'ppp-dsRNA are highly susceptible to HSV-1, whereas WT mice receiving the same treatment are protected⁵³. Other work reported that activation of RIG-I induces expression of STING⁵⁴, suggesting a functional link between the two. Likewise, it has been observed that DNA damage in bone marrow-derived macrophages leads to activation of the cGAS/STING pathway, which in turn induces type I IFNs and upregulation of immune genes, including RIG-I⁵⁵. Recent findings highlighted an important link between cytoplasmic nucleic acid pathways (cGAS/ STING or MDA5/MAVS) and the endosomal RNA sensor TLR7 in a model of malaria infection⁵⁶. Indeed, activation of the cytoplasmic nucleic acid pathway induces SOCS1, which in turn inhibits MyD88, the adaptor protein for TLR756. Finally, it was revealed that the dimerization, translocation and activation of STING during pathogenic infection requires the adaptor protein TRIF, an adaptor for the RNA sensor TI R357.

Autophagy

cGAS/STING signaling has been linked to autophagy on various levels. For example, cGAS has been reported to be degraded by p62dependent selective autophagy after it senses cytoplasmic DNA⁵⁸. During infection with live Gram-positive bacteria such as Listeria innocua, phagocytes undergo autophagy following STING-dependent sensing of c-di-AMP⁵⁹. During Mycobacterium tuberculosis infection, the cGAS/STING axis triggers both type I IFN production and autophagy⁶⁰, including selective autophagy of this pathogen⁶¹. On the contrary, during Mycobacterium bovis infection, the cytoplasmic DNA sensor AIM2 has been reported to inhibit STING induced autophagy⁴². There have been reports that cGAS and STING each interacts with autophagy proteins in other contexts, although the nature of these interactions remains unclear. For instance, direct interaction between cGAS and Beclin-1 halts production of 2'3'-cGAMP by the former⁶², thus preventing constitutive activation of STING and consequently, hyperproduction of type I IFNs. Furthermore, following activation, STING seems to be trafficked from the endoplasmic reticulum (ER) to the Golgi by an autophagy-like process that depends on Atg9a⁶³.

ER-stress and apoptosis

A role for the STING/IRF3 axis in alcoholic liver disease has been described, whereby ethanol-induced ER stress leads to activation and phosphorylation of IRF3 via STING. This drives the interaction of p-IRF3 with the pro-apoptotic protein Bax, and eventually to apoptosis of hepatocytes⁶⁴, which was subsequently reported to be STING- and IRF3-dependent⁶⁵. Further research has found that the Bax/Bak-mediated apoptosis generates DNA that activates the cGAS/STING pathway to induce type I IFNs and that this response is blocked by apoptotic caspases such as Apaf 1, caspase-3/7 and caspase-9⁶⁶. Studies in B cells revealed that STING function depends on ER stress responses conveyed through the IRE 1/XBP-1 pathway and that STING agonists provoke mitochondria-mediated apoptosis⁶⁷. Finally, ER stress-induced apoptosis during *Mycobacterium bovis* infection has been linked to the STING/IRF3 axis⁶⁸.

Figure 3: Regulation of STING signaling.

Post-translational regulation

Various post-translational modifications have been described for STING, spanning its activation up to its degradation. However, the spatiotemporal sequence of these modifications remains poorly understood. Both STING and cGAS appear to be stabilized upon sumoylation by TRIM38 relatively early in signaling⁶⁹. Activation of STING seems to require palmitoylation, presumably by DHHC proteins³⁶. Phosphorylation of STING by TBK1 enables its binding to IRF3, whereas phosphorylation by ULK1 appears necessary for its degradation⁷⁰. Likewise, ubiquitination of STING by ubiquitin ligases can serve different purposes such as promoting TBK1 recruitment (TRIM32, TRIM56 or AMFR); enabling degradation (RNF5); or preventing degradation (RNF26)⁷⁰. STING-2, a human alternative STING transcript isoform which lacks the transmembrane domains, has been shown to antagonize STING function through 2'3'-cGAMP and other transducer molecules (e.g. TBK1) sequestration⁷¹.

Genetic variation of STING

Human STING is encoded by the gene Tmem173, which appears in several variants within the population. Recent work has revealed that the sequence differences among these variants can markedly affect STING function and consequently, impact human health (Fig. 4).

Early work on human STING variants suggested that they vary widely in their responsiveness to microbial CDNs. For instance, the variants R232H and HAQ (R71H-G230A-R293Q) are drastically less sensitive to c-di-GMP and c-di-AMP than their most prevalent variant, 232R-RGR (71R-230G-293R), the latter of which accounts for roughly 60% of the human population⁷². Importantly, the HAQ variant has proven to be a null allele that does not respond to 2'3'-cGAMP or the potent synthetic CDN STING agonist 2'3'-c-di-AM(PS)2(Rp,Rp)⁷³. The open questions on the functionality of STING-HAQ are especially relevant to THP1 cells, which carry this variant.

Other genetic variations leading to loss or gain of STING functionality have been revealed. An alternative splicing isoform of STING has been identified: it lacks exon 7 and acts as a dominant negative regulator of type I IFN production as it cannot bind to TBK1⁷⁴. This STING variant, however, does not impair the NF-κB pathway. On the contrary, other mutations in STING can lead to excessive activation of interferon stimulated genes (ISGs). This is the case in patients suffering from STING-Associated Vasculopathy with Onset in Infancy (SAVI), a pediatric condition characterized by excessive inflammation, dermatologic and pulmonary tissue damage, as well as abnormal antibody production. SAVI-patients carry one of four mutations in exon 5 (V147L, N154S, V155M or V147M) leading to constitutive type I IFN production, probably due to constitutive dimerization of STING, although this is still unclear^{22,75,76,77}. Recently, three more gain-of-function mutations in SAVI-like patients have been uncovered: C206Y, R281Q and R284G⁷⁸. These findings suggest that more pathogenic STING alleles may be soon discovered. Last, another case of dominant STING gain-of-function mutation (G166E) has been identified in several family members with chilblain lupus⁷⁹.

Table 4: STING gene variants

STING VARIANT	DESCRIPTION	CAT.CODE*
STING-WT	R232 isoform	puno1-hstingwt
STING-WT-HA	HA-tagged coding sequence	puno1ha-hsting
hSTING-A162	A162 isoform (S162A)	puno1-hsting-a162
hSTING-A230	A230 isoform (G230A)	puno1-hsting-a230
hSTING-H232	H232 isoform (R232H)	puno1-hsting-h232
hSTING-HAQ	HAQ (R71H-G230A-R293Q) isoform	puno1-hsting-haq
hSTING-M155	M155 isoform (V155M)	puno1-hsting-m155
hSTING-MRP	Isoform lacking exon 7	puno1-hsting-mrp
hSTING-N200	N200 isoform (I200N)	puno1-hsting-n200
hSTING-S154	S154 isoform (N154S)	puno1-hsting-s154

* All plasmids are provided as 20 µg of lyophilized DNA.

Figure 4: Schematic of human STING genetic variants and their functional effect or disease association.

Therapeutic targeting of STING

The cGAS/STING axis interacts with other innate immune pathways, such as DNA sensors (AIM2 and IFI16) and RNA sensors (RIG-I and MDA5). Therefore, STING is implicated in many health disorders such as infectious diseases, cancer, and autoimmunity.

Viral infections

Researchers have been evaluating CDN STING agonists as vaccine adjuvants long before the discovery of STING⁸⁰. Detection of viral DNA (e.g. herpes virus) or RNA (e.g. coronavirus) by cGAS and/or other sensors leads to activation of STING, which induces a robust anti-viral response through type I IFNs⁸¹. Also, a cGAS-independent activation of STING has been reported: enveloped-RNA viruses fuse to the host cell membrane, and then directly interact with and activate STING³³. Interestingly, the 2'3'-cGAMP produced by cGAS in infected cells can travel within viral particles⁸², or via gap junctions⁸³, to reach neighboring cells, thus propagating a local anti-viral response. Of note, many viruses emit peptides and proteins that directly or indirectly inhibit host STING signaling. Examples include dengue virus, whose protease complex NS2B/3 binds to and cleaves STING, and hepatitis C virus, whose protein NS4B also binds to and deactivates STING⁵⁰. Moreover, certain host endogenous factors can block STING signaling upon viral attack, such as the mitochondrial-localized protein NLRX1, which is required for HIV-1 infection⁸⁴. Together, these findings underscore the evolutionary tit-for-tat between viral pathogens and host immunity.

Bacterial infections

Although bacteria produce CDNs, STING signaling upon bacterial infection is principally dependent of 2'3'-cGAMP production by cGAS. Bacterial species known to activate STING via cGAS include Mycobacteria, Legionella, Listeria, Shigella, Francisella, Chlamydia, Neisseria and group B Streptococcus⁴⁹. Thus, STING-dependent production of type I IFNs has been reported in diverse cellular and animal models of bacterial infection such as *Streptococcus pneumoniae* in mice⁸⁵. Among examples of direct activation of STING by bacterial CDNs, *Mycobacterium tuberculosis* releases c-di-AMP into the cytoplasm²⁴. Furthermore, c-di-AMP has been imputed in infection by *Listeria monocytogenes*, although its importance relative to that of bacterial DNA, and the resulting STING-induction remains unclear^{86,87}.

Cancer

Tumor DNA can induce antigen-presenting cell activation through the cGAS/STING axis and thus contribute to anti-tumor immunity through priming of antigen-specific cytotoxic CD8+ T cells. This immunosurveillance mechanism has been reported in models of breast cancer⁸⁸, colorectal cancer⁸⁹ and melanoma⁹⁰, among others. In fact, it has also been shown to underpin the efficacy of radiation therapy, through immunostimulatory DNA release by dying irradiated tumor cells⁹¹. Based on this, the synthetic CDN STING agonist 2'3'-c-di AM(PS)2 (Rp/Rp) is being evaluated in a Phase I clinical trial for solid tumors and blood cancers⁹².

Perplexingly, deficient or excessive STING activities have each been imputed in cancer. The former involves tumor cell survival enabled by a lack of tumor-suppressive interleukine-22 binding protein induction⁹³— indeed, many tumors lack active cGAS or STING⁸⁹— whereas the latter involves inflammatory tumorigenesis caused by excessive cytokine production, as reported in models of colitis⁹⁴ and brain metastasis⁵¹. Also supporting a pernicious role for STING in certain cancers are findings that STING activation can induce expression of factors that inhibit effector T cells, such as IDO⁹⁵ and PD-L1⁴⁴. Cancer therapies related to the cGAS/STING pathway must therefore account for the functional activity of this axis in tumor and healthy cells.

Autoimmunity

Accumulation of self-nucleic acids (DNA, RNA, or DNA/RNA hybrids) in the cytoplasm leads to constitutive activation of cGAS/STING signaling and production of inflammatory cytokines that, when chronic, can cause autoimmune diseases. A common pathologic trait in these cases is dysregulated enzymatic processing of DNA or RNA, as with mutated Trex1 or RNAse H2, in Aicardi-Goutières Syndrome (AGS)⁴⁹, or mutated POLA1, in X-Linked Reticulate Pigmentary Disorder (XLRPD)%. However, such autoinflammation can also derive from mutations in STING itself, leading to its constitutive activation, as in a lupus-like syndrome⁷⁵ or in SAVI²². To date, at least eight STING mutations separately leading to autoinflammation have been identified, some of which (e.g. V147L, N154S and V155M) seem to induce constitutive exit of STING from the ER³⁴. Alternatively, significantly elevated cGAS expression has been reported in lupus patients relative to control subjects, those with detectable 2'3'-cGAMP in their peripheral blood exhibited worse symptoms⁹⁷. Given all

these findings, inhibitors of cGAS/STING signaling, including cGAS or STING antagonists, are now being pursued as possible therapies for autoimmune diseases.

Conclusion

A decade of research has brought to light STING as a key adaptor in the immune response to cytosolic nucleic acids in numerous situations. The activation or repression of STING and its signaling is of great interest in many therapeutic fields including microbial infections, cancer, and autoimmune disorders (Fig. 5). Although major advances have been made through crystallization, genetic and functional characterization of STING variants, much more needs to be unraveled as more sophisticated levels of STING regulation are being uncovered. As an example, an intriguing regulation loop has been discovered between type I IFN production and lipid metabolism in order to induce DNA-independent STING activation and to counter viral infectivity⁹⁸. Moreover, because STING and other nucleic sensors pathways (RIG-I/MDA-5, AIM2, and TLRs) converge to the same downstream signaling, better comprehension of their complex interplay is required to develop therapeutic drugs that regulate the inflammatory innate and adaptive immune responses. Last, the next challenge will be to establish suitable in vivo delivery of such molecules.

Figure 5: Central role of STING in sensing nucleic acids and in inflammation.

Abbreviations

CDNs: cyclic dinucleotides cGAS: cyclic GMP-AMP synthase ER: endoplasmic reticulum IFNs: interferons IRF3: interferon regulatory factor 3 ISGs: interferon-stimulated genes ISRE: interferon-responsive element NF-κB: nuclear factor kappa light-chain-enhancer of activated B cells PRR: pattern recognition receptor SAVI: STING-Associated Vasculopathy with Onset in Infancy SNP: single nucleotide polymorphism STING: stimulator of interferon genes TBK1: TANK-binding-kinase-I TNF-α: tumor necrosis factor alpha

References

1. Barbalat R. et al., 2011. Nucleic Acid Recognition by the Innate Immune System. Annual Review of Immunology 29: 185-214. 2. Ishikawa H., and Barber G.N. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455: 674-8. 3. Zhong B. et al., 2008. The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity 29: 538-50. 4. Burdette D.L. et al., 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478: 515-8. 5. Sun L. et al., 2013. Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science 339: 786-91. 6. Wu J. et al., 2013. Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science 339: 826-30. 7. Ishikawa H. et al., 2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461: 788-92. 8. Abe T. and Barber G.N., 2014. Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF-KB Activation through TBK1. Journal of Virology 88:5328-41.9. Karaolis D.K.R. et al., 2005. c-di-GMP (3'-5'-Cyclic Diguanylic Acid) Inhibits Staphylococcus aureus Cell-Cell Interactions and Biofilm Formation. Antimicrobial Agents and Chemotherapy 49: 1029-38. 10. Ogunniyi A.D. et al., 2008. c-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection. Vaccine 26: 4676-85. 11. Amikam D. et al., 1995. The novel cyclic dinucleotide 3'-5' cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochemical Journal 311: 921-7. 12. Karaolis D.K.R. et al., 2005. 3',5'-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochemical and Biophysical Research Communications 329: 40-5. 13. Steinberger O. et al., 1999. Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3',5'-cyclic diguanylic acid. FEBS Letters 444: 125-9. 14. Lioux T. et al., 2016. Design, Synthesis, and Biological Evaluation of Novel Cyclic Adenosine-Inosine Monophosphate (cAIMP) Analogs That Activate Stimulator of Interferon Genes (STING). Journal of Medicinal Chemistry 59: 10253-67. 15. Parvatiyar K. et al., 2012. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13: 1155-61. 16. Omura H. et al., 2016. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide. Scientific Reports 6: 34756. 17. McFarland A.P. et al., 2017. Sensing of Bacterial Cyclic Dinucleotides by the Oxidoreductase RECON Promotes NF-KB Activation and Shapes a Proinflammatory Antibacterial State. Immunity 46: 433-45. 18. Ching L.M. et al., 1991. Haematological effects in mice of the antitumour agents xanthenone-4-acetic acid, 5,6-dimethyl-xanthenone-4-acetic acid [correction of 5,6-methyl-] and flavone acetic acid. Cancer chemotherapy and pharmacology 28: 414-9. 19. Lara Jr P.N. et al., 2011. Randomized Phase III Placebo-Controlled Trial of Carboplatin and Paclitaxel With or Without the Vascular Disrupting Agent Vadimezan (ASA404) in Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology 29: 2965-71. 20. Prantner D. et al., 2012. 5,6-Dimethylxanthenone-4-acetic Acid (DMXAA) Activates Stimulator of Interferon Gene (STING)-dependent Innate Immune Pathways and Is Regulated by Mitochondrial Membrane Potential. Journal of Biological Chemistry 287: 39776-88. 21. Conlon J. et al., 2013. Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid. The Journal of Immunology 190: 5216-25. 22. Liu Y. et al., 2014. Activated STING in a Vascular and Pulmonary Syndrome. New England Journal of Medicine 371: 507-18. 23. Corrales L. et al., 2015. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Reports 11: 1018-30. 24. Dey B. et al., 2015. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nature medicine 21: 401-6. 25. Kim S. et al., 2013. Anticancer Flavonoids Are Mouse-Selective STING Agonists. ACS Chemical Biology 8: 1396-401. 26. Dey R.J. et al., 2017. Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase. Nat Chem Biol 13: 210-7. 27. Burdette D.L., and Vance R.E. 2013. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14: 19-26. 28. Lau L. et al., 2015. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350: 568-71. 29. Aguirre S. et al., 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nature microbiology 2: 17037. 30. Liu Y. et al., 2015. Hepatitis B Virus Polymerase Disrupts K63-Linked Ubiquitination of STING To Block Innate Cytosolic DNA-Sensing Pathways. Journal of Virology 89: 2287-300. 31. Christensen M.H. et al., 2016. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. The EMBO Journal 35: 1385-99. 32. Fu Y.Z. et al., 2017. Human Cytomegalovirus Tegument Protein UL82 Inhibits STING-Mediated Signaling to Evade Antiviral Immunity. Cell Host & Microbe 21: 231-43. 33. Holm C.K. et al., 2016. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nat Commun 7: 10680. 34. Dobbs N. et al., 2015. STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host & Microbe 18: 157-68. 35. Steinhagen F. et al., 2017. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes. Eur J Immunol. doi:10.1002/eji.201747338. 36. Mukai K. et al., 2016. Activation of STING requires palmitoylation at the Golgi. Nature Communications 7: 11932. 37. Pokatayev V. et al., 2016. RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. The Journal of Experimental Medicine 213: 329-36.

InvivoGeniatous

38. Chen Y. et al., 2017. P38 Inhibition Provides Anti-DNA Virus Immunity by Regulation of USP21 Phosphorylation and STING Activation. J Exp Med. 214: 991-1010. 39. Dutta D. et al., 2015. BRCA1 Regulates IFI16 Mediated Nuclear Innate Sensing of Herpes Viral DNA and Subsequent Induction of the Innate Inflammasome and Interferon- β Responses. PLoS Pathogens 11: e1005030. **40. Diner B.A.** et al., 2015. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Molecular Systems Biology 11: 787. 41. Zhang Z. et al., 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature immunology 12: 959-65. 42. Liu C. et al., 2016. AIM2 inhibits autophagy and IFN-β production during M. bovis infection. Oncotarget 7: 46972-87. 43. Malik P. et al., 2014. NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope. PLoS ONE 9: e111851. 44. Parkes E.E. et al., 2017. Activation of STING-Dependent Innate Immune Signaling By S-Phase-Specific DNA Damage in Breast Cancer. JNCI: Journal of the National Cancer Institute 109: 199. 45. Kondo T. et al., 2013. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proceedings of the National Academy of Sciences 110: 2969-74. 46. Bhattacharya S. et al., 2017. RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Research 45: 4590-605. 47. Pépin G. et al., 2016. Cre-dependent DNA recombination activates a STING-dependent innate immune response. Nucleic Acids Research 44: 5356-64. 48. Wang Y. et al., 2017. Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection. Immunity 46: 393-404. 49. Chen Q. et al., 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17: 1142-9. 50. Maringer K., and Fernandez-Sesma A. 2014. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine & Growth Factor Reviews 25: 669-79. 51. Zevini A. et al., 2017. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Trends in Immunology 38: 194-205. 52. Suspène R. et al., 2017. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage. Nucleic Acids Research 45: 3231-41. 53. Liu Y. et al., 2017. RIGulation of STING expression: at the crossroads of viral RNA and DNA sensing pathways. Inflammation and cell signaling 4: e1491. 54. Goulet M.-L. et al., 2013. Systems Analysis of a RIG-I Agonist Inducing Broad Spectrum Inhibition of Virus Infectivity, PLOS Pathogens 9: e1003298. 55. Härtlova A. et al., 2015. DNA Damage Primes the Type I Interferon System via the Cytosolic DNA Sensor STING to Promote Anti-Microbial Innate Immunity. Immunity 42: 332-43. 56. Yu X. et al., 2016. Cross-Regulation of Two Type I Interferon Signaling Pathways in Plasmacytoid Dendritic Cells Controls Anti-malaria Immunity and Host Mortality. Immunity 45: 1093-107. 57. Wang X. et al., 2016. STING Requires the Adaptor TRIF to Trigger Innate Immune Responses to Microbial Infection. Cell Host & Microbe 20: 329-41 58. Chen M. et al., 2016. TRIM14 Inhibits cGAS Degradation Mediated by Selective Autophagy Receptor p62 to Promote Innate Immune Responses. Molecular Cell 64: 105-19. 59. Moretti J. et al., 2017. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171:1-15. 60. Shibutani S.T. et al., 2015. Autophagy and autophagy-related proteins in the immune system. Nat Immunol 16: 1014-24. 61. Watson R.O. et al., 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell host & microbe 17: 811-9. 62. Liang Q. et al., 2014. Crosstalk between the cGAS DNA Sensor and Beclin-1 Autophagy Protein Shapes Innate Antimicrobial Immune Responses. Cell Host & Microbe 15: 228-38. 63. Saitoh T. et al., 2009. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proceedings of the National Academy of Sciences 106: 20842-6. 64. Petrasek J. et al., 2013. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proceedings of the National Academy of Sciences 110: 16544-9. 65. Iracheta-Vellve A. et al., 2016. Endoplasmic Reticulum Stress-induced Hepatocellular Death Pathways Mediate Liver Injury and Fibrosis via Stimulator of Interferon Genes. Journal of Biological Chemistry 291: 26794-805. 66. White Michael J. et al., 2014. Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production. Cell 159: 1549-62. 67. Tang C.-H.A. et al., 2016. Agonist-Mediated Activation of STING Induces Apoptosis in Malignant B Cells. Cancer Research 76: 2137-52. 68. Cui Y. et al., 2016. Mycobacterium bovis Induces Endoplasmic Reticulum Stress Mediated-Apoptosis by Activating IRF3 in a Murine Macrophage Cell Line. Frontiers in Cellular

and Infection Microbiology 6: 182. 69. Hu M.-M. et al., 2016. Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity 45: 555-69. 70. Chiang C., and Gack M.U. 2017. Post-translational Control of Intracellular Pathogen Sensing Pathways. Trends in Immunology 38: 39-52. 71. Wang P-H. et al., 2018. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res. doi:10.1093/nar/gky186. 72. Yi G. et al., 2013. Single Nucleotide Polymorphisms of Human STING Can Affect Innate Immune Response to Cyclic Dinucleotides. PLOS ONE 8: e77846. 73. Patel S. et al., 2017. The Common R71H-G230A-R293Q Human TMEM173 Is a Null Allele. The Journal of Immunology 198: 776-87.74. Chen H. et al., 2014. An Alternative Splicing Isoform of MITA Antagonizes MITA-Mediated Induction of Type I IFNs. The Journal of Immunology 192: 1162-70. 75. Jeremiah N. et al., 2014. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. The Journal of Clinical Investigation 124: 5516-20. 76. Munoz J. et al., 2015. Stimulator of interferon genes-associated vasculopathy with onset in infancy : A mimic of childhood granulomatosis with polyangiitis. JAMA Dermatology 151: 872-7. 77. Warner J.D. et al., 2017. STING-associated vasculopathy develops independently of IRF3 in mice. J Exp Med. 214: 3279-92. 78. Melki I. et al., 2017. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. Journal of Allergy and Clinical Immunology 140: 543-52.e5. 79. König N. et al., 2017. Familial chilblain lupus due to a gain-of-function mutation in STING. Annals of the Rheumatic Diseases 76: 468-72. 80. Dubensky T.W. et al., 2013. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Therapeutic Advances in Vaccines 1: 131-43. 81. Ma Z., and Damania B. 2016. The cGAS-STING Defense Pathway and Its Counteraction by Viruses. Cell Host & Microbe 19: 150-8. 82. Gentili M. et al., 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349: 1232-6. 83. Ablasser A. et al., 2013. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 498: 380-4. 84. Guo H. et al., 2016. NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host and Microbes. 19: 515-28. 85. Mitzel D.N. et al., 2014. Age-Enhanced Endoplasmic Reticulum Stress Contributes to Increased Atg9A Inhibition of STING-Mediated IFN-β Production during Streptococcus pneumoniae Infection. The Journal of Immunology 192: 4273-83. 86. Hansen K. et al., 2014. Listeria monocytogenes induces IFNB expression through an IFI16-, cGAS- and STING-dependent pathway. The EMBO Journal 33: 1654-66. 87. Archer K.A. et al., 2014. STING-Dependent Type I IFN Production Inhibits Cell-Mediated Immunity to Listeria monocytogenes. PLOS Pathogens 10: e1003861. 88. Chandra D. et al., 2014. STING Ligand c-di-GMP Improves Cancer Vaccination against Metastatic Breast Cancer. Cancer Immunology Research 2: 901-10. 89. Xia T. et al., 2016. Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis. Cell Reports 14: 282-97. 90. Demaria O. et al., 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proceedings of the National Academy of Sciences 112: 15408-13. 91. Deng L. et al., 2014. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 41: 843-52. 92. https:// clinicaltrials.gov/ct2/show/NCT02675439?term=adu-s100&rank=1 93. Ahn J., Konno H., and Barber G.N. 2015. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene 34: 5302-8. 94. Zhu Q. et al., 2014. Cutting Edge: STING Mediates Protection against Colorectal Tumorigenesis by Governing the Magnitude of Intestinal Inflammation. The Journal of Immunology 193: 4779-82. 95. Lemos H. et al., 2016. STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation. Cancer Research 76: 2076-81. 96. Starokadomskyy P. et al., 2016. DNA polymerase-a regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol 17: 495-504. 97. An J. et al., 2017. Expression of Cyclic GMP-AMP Synthase in Patients With Systemic Lupus Erythematosus. Arthritis & Rheumatology 69: 800-7. 98. York Autumn G. et al., 2015. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell 163: 1716-29.

InvivoGen

For more information please visit : www.invivogen.com

STING: STIMULATOR OF INTERFERON GENES

EUROPE 5, rue Jean Rodier F-31400 Toulouse France Tel: +33 (0)5 62 71 69 39 Fax: +33 (0)5 62 71 69 30 info.eu@invivogen.com USA 10515 Vista Sorrento Parkway San Diego, CA 92121 Tel: +1 888 457 5873 Fax: +1 858 457 5843 info@invivogen.com

ASIA

Unit 709A, Bio-Informatics Center 2 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong Tel: +852 3622 3480 Fax: +852 3622 3483 info.hk@invivogen.com