THP1-KO-ASC Cells

ASC knockout human monocytes

Catalog code: thp-koascz https://www.invivogen.com/thp1-ko-kd-asc

For research use only

Version 20J26-MM

PRODUCT INFORMATION

Contents

- $3-7 \times 10^{\circ}$ THP1-KO-ASC cells in a cryovial or shipping flask IMPORTANT: If cells provided in a cryovial are not frozen upon arrival, contact InvivoGen immediately.
- 1 ml of Normocin[™] (50 mg/ml). Normocin[™] is a formulation of three antibiotics to prevent contamination from mycoplasmas, bacteria, and fungi. Store at -20 °C.*
 - 1 ml of Zeocin[™] (100 mg/ml). Store at 4°C or-20°C.*
- *The expiry date is specified on the product label.

Note: Data sheets for all components are available on our website.

Handling of Frozen Cells Upon Arrival

Cells must be thawed immediately upon receipt and grown according to handling procedures (as described on the next page) to ensure the best cell viability and proper assay performance.

Note: Avoid freezing cells upon receipt as it may result in irreversible damage to the cell line.

<u>Disclaimer</u>: We cannot guarantee cell viability if the cells are not thawed immediately upon receipt and grown according to handling procedures.

IMPORTANT: For cells that arrive in a shipping flask please refer to the enclosed 'cell recovery procedure'.

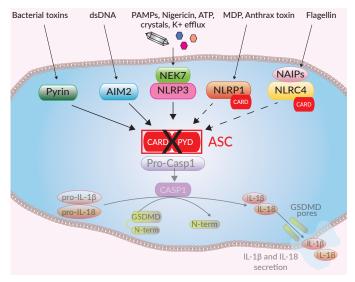
Cell Line Stability

- Genetic instability is a biological phenomenon that occurs in all stably transfected cells, resulting in reduced responsiveness in normal cell culture conditions. Therefore, it is critical to prepare an adequate number of frozen stocks at early passages.
- THP1-KO-ASC cells should not be passaged more than 20 times to remain fully efficient. These cells should be maintained in growth medium supplemented with the selective antibiotic Zeocin[™] (100 µg/ml) following every other passage.

Quality Control

- Biallelic ASC knockout has been verified by DNA sequencing, PCR, Western blot (WES™), and functional assays.
- The stability for 20 passages, following thawing, has been verified.
- These cells are guaranteed mycoplasma-free.

PRODUCT DESCRIPTION


THP1-KO-ASC cells were generated from the human monocytic THP1-Null2 cell line through the stable knockout of the ASC gene, causing the loss of ASC expression. Mature IL-1 β secretion is abolished in these cells after activation with inducers of the ASC-dependent NLRP3 (i. e. Nigericin, MSU crystals, Alum Hydroxide) and AIM2 (i.e. Poly (dA:dT)) canonical inflammasomes. The NLRP3-caspase-1 dependent maturation of IL-1 β is abolished upon indirect activation of NLRP3 by non-canonical inflammasome inducers such as E. coli outer membrane vesicles (OMVs). Furthermore, pyroptosis is abrogated in THP1-KO-ASC cells.

THP1-KO-ASC cells are resistant to Zeocin[™].

BACKGROUND

ASC (apoptosis-associated speck-like protein containing a CARD domain, also known as PYCARD) is an essential protein adaptor implicated in canonical inflammasome responses $^{\rm l}$. The canonical response is driven by aggregation of a 'sensor' with the ASC adaptor and pro-caspase-1. Activation of caspase-1 (CASP1) induces the maturation of pro-IL-1 β /pro-IL-18 and cleavage of the pore-forming protein gasdermin D (GSDMD), leading to secretion of IL-1 β /-18 and pyroptosis $^{\rm l}$.

In resting cells, ASC is present in a soluble and diffuse form both in the cytoplasm and nucleus². ASC is essential to inflammasome sensors that do not contain a CARD domain, such as NLRP3, AIM2, and Pyrin¹. This is due to the bipartite composition of ASC, consisting of one PYD and one CARD domain, allowing the recruitment of the CARD-containing pro-caspase-1 to these sensors. The inflammasome sensors NLRP1 and NLRC4 have a CARD domain, and therefore, can recruit pro-caspase-1 either directly or through ASC. However, it has been shown that upon activation of these sensors, in the absence of ASC, the secretion of mature IL-1β and IL-18 is reduced¹.

1. Mathur A. et al., 2017. Molecular mechanisms of inflammasome signaling. J. Leuk. Biol. 103:233. 2. Hoss F. et al., 2017. Assembly and regulation of ASC specks. Cell. Mol. Life Sci. 74:1211.

USE RESTRICTIONS

These cells are distributed for research purposes only.

This product is covered by a Limited Use License. For non-research use, such as screening, quality control or clinical development, please contact us at: info@invivogen.com.

TECHNICAL SUPPORT

InvivoGen USA (Toll-Free): 888-457-5873 InvivoGen USA (International): +1 (858) 457-5873 InvivoGen Europe: +33 (0) 5-62-71-69-39 InvivoGen Hong Kong: +852 3622-3480 E-mail: info@invivogen.com

SAFETY CONSIDERATIONS

Biosafety Level 1

HANDLING PROCEDURES

Required Cell Culture Medium

• Growth Medium: RPMI 1640, 2 mM L-glutamine, 25 mM HEPES, 10% (v/v) heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg/ml streptomycin, 100 µg/ml Normocin™

Initial culture of all THP1-derived cells must be performed in growth medium containing 20% heat-inactivated FBS.

Note: The use of Normocin™ together with Pen-Strep is required to keep the cells free of microbial contaminants. Contamination of this cell line may activate PRRs, such as TLRs, resulting in differentiation of the monocytes and activation of PRR signaling pathways.

- \bullet Test Medium: RPMI 1640, 2 mM L-glutamine, 25 mM HEPES, 10% (v/v) heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg/ml streptomycin
- Freezing Medium: 95% FBS and 5% DMSO
- Required selective antibiotic: Zeocin™

Initial Culture Procedure

The first propagation of cells should be for generating stocks for future use. This ensures the stability and performance of the cells for subsequent experiments.

- 1. Thaw the vial by gentle agitation in a 37 °C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing should be rapid.
- 2. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% ethanol

 $\underline{\text{Note:}}$ All steps from this point should be carried out under strict aseptic conditions.

- 3. Transfer cells to a larger tube containing 15 ml of pre-warmed growth medium (with 20% heat-inactivated FBS).
- 4. Centrifuge cells at 150 x g (RCF) for 10 mins.
- 5. Remove supernatant containing the cryoprotective agent and resuspend cells with 1 ml of growth medium (with 20% heat-inactivated FBS). Do not add selective antibiotics until the cells have been passaged twice.
- 6. Transfer the cells to a T-25 culture flask containing 5 ml of growth medium (with 20% heat-inactivated FBS).
- 7. Place the culture at 37 °C in 5% CO₂.

Cell Maintenance

- 1. THP1-KO-ASC cells grow in suspension.
- 2. After cells have recovered and are growing well (following at least two passages), maintain and subculture the cells in growth medium. To maintain selection pressure, add 100 µg/ml of Zeocin to the growth medium every other passage.
- 3. Pass the cells every 3 days by inoculating 5 x 10^5 cells/ml. Do not allow the cell concentration to exceed 2 x 10^6 cells/ml.

<u>Note:</u> The average doubling time for the THP1-KO-ASC cells is \sim 75 hours using the conditions described above.

Frozen Stock Preparation

1. Resuspend cells at a density of 5-7 x 10^6 cells/ml in freshly prepared freezing medium with cold FBS.

 $\underline{\text{Note:}}$ A T-75 culture flask typically yields enough cells for preparing 3-4 frozen vials.

- 2. Dispense 1 ml of the cell suspension into cryogenic vials.
- 3. Place vials in a freezing container and store at -80 °C overnight.
- 4. Transfer vials to liquid nitrogen for long term storage. <u>Note:</u> If properly stored, cells should remain stable for years.

Cell Handling Recommendations

To ensure the best results, use THP1-KO-ASC cells with less than 20 passages.

EXPERIMENTAL PROCEDURES

THP1-KO-ASC cells are designed to study the signals involved in inflammasome activation. Below is an example protocol to induce canonical and non-canonical inflammasome responses.

It is recommended to perform assays with test medium which does not contain Normocin $^{\text{\tiny M}}$ and Zeocin $^{\text{\tiny M}}$.

Cell preparation

- 1. The day prior the assay, pass cells at 5 x 10^5 cells/ml in growth medium.
- 2. On the day of the assay, centrifuge at $150\,x\,g$ (RCF) for $10\,mins$ or $300\,x\,g$ (RCF) for $5\,mins$
- 3. Remove supernatant and resuspend THP1-KO-ASC cells at 1.6×10^6 cells/ml in freshly prepared, pre-warmed **test medium**.

Priming

- 1. Dispense 20 μ l of LPS-EK at 10 μ g/ml (final concentration: 1 μ g/ml) per well of a flat-bottom 96-well plate.
- 2. Add 180 µl of cell suspension (~300,000 cells) per well.
- 3. Incubate the plate for 3h at 37°C in 5% CO₂.

Activation

- 1. Carefully remove culture supernatant . Add 180 μl of test medium.
- 2. Add 20 µl of inflammasome inducer per well.

<u>Note:</u> We recommend to perform a dilution series for each inducer (e.g. 1.2 dilution series of Nigericin starting at $10 \mu M$).

- 3. Include a negative control (no inducer).
- 4. Incubate the plate for 6h at 37°C in 5% CO₂.
- 5. Take 100 μl of culture supernatant for analysis of human (h)IL-1 $\!\beta$ secretion and/or cell death.

Optional: These samples can be stored at -80°C until required.

- 6. Add 100 µl of test medium to each well of the original culture plate and continue to incubate for an additional 18h at 37°C in 5% CO₂.
- 7. Take 100 μl of culture supernatant for analysis of hIL-1 $\!\beta$ secretion and/or cell death.

Optional: These samples can be stored at -80°C until required.

Detection of mature hIL-1 β and cell death in supernatant

- The secretion of bioactive hIL-1 β in the supernatant of THP1-KO-ASC cells can be assessed using InvivoGen's HEK-Blue[™] IL-1 β sensor cells. For more details on how to use these cells please visit https://www.invivogen.com/hek-blue-il1b
- Cell death can be monitered using classical assays such as the lactate dehydrogenase (LDH) assay, following the manufacturer's instructions.

RELATED PRODUCTS

Product	Description	Cat. Code
Zeocin [™] Alum Hydroxide MSU Crystals Nigericin E. <i>coli</i> OMVs Recominant hIFN-γ .PS-EK (<i>E. coli</i> K12) HEK-Blue™ IL-1β cells QUANTI-Blue™ Solution	Selection antibiotic Inflammasome inducer Inflammasome inducer Inflammasome inducer Inflammasome inducer Recombinant cytokine TLR4 agonist IL-1 β reporter cells SEAP detection reagent	ant-zn-1 tlrl-aloh tlrl-msu tlrl-nig tlrl-omv-1 rcyec-hinfg tlrl-peklps hkb-il1b rep-qbs1

InvivoGen USA (Toll-Free): 888-457-5873 InvivoGen USA (International): +1 (858) 457-5873 InvivoGen Europe: +33 (0) 5-62-71-69-39 InvivoGen Hong Kong: +852 3622-3480 E-mail: info@invivogen.com

