pUNO2-mcs

A plasmid containing a multiple cloning site and the Zeocin ${ }^{\text {TM }}$ resistance gene
 Catalog code: puno2-mcs
 https://www.invivogen.com/puno-mcs

For research use only
 Version 21EL19-MM

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized plasmid DNA
- 1 ml of Zeocin ${ }^{\text {T }}$ at $100 \mathrm{mg} / \mathrm{ml}$

Storage and Stability

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable at least for 1 year.
- Store Zeocin ${ }^{T M}$ at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. ${ }^{*}$
*The expiry date is specified on the product label.

Quality control

- Plasmid construct has been confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE

pUNO2-mcs is a ready-made expression vector containing the Zeocin ${ }^{\text {TM }}$ resistance gene, the hybrid EF1a/HTLV promoter and a multiple cloning site.
pUNO2-mcs may be used for:
Cloning in a gene of interest. Six unique restriction sites comprise the MCS facilitating cloning of genes. Cloned genes will be under the control of the EF1a/HTLV promoter.

As an "empty" control vector. pUNO2-mcs plamids were designed to serve as experimental control vectors for the pUNO2 plasmid family that feature a wide choice of native and fusion genes.

METHODS

Plasmid resuspension

Briefly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

Zeocin ${ }^{\text {TM }}$ usage

Zeocin ${ }^{T M}$ should be used at $25 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $50-400 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Zeocin™ is supplied as $100 \mathrm{mg} / \mathrm{ml}$ solution in HEPES buffer.

PLASMID FEATURES

-EF-1a/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{1}$ and the 5^{\prime} untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes for a «house keeping» gene. It is expressed at high levels in all cell cycles and lower levels during GO phase. The promoter is also non-tissue specific; it is highly expressed in all cell types. The R segment and part of the $U 5$ sequence (R-U5') of the HTLV Type 1 Long Terminal Repeat ${ }^{2}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency possibly through mRNA stabilization.

- MCS: The multiple cloning site contains the following unique restriction sites:
5' - Sall, BamHI, Eco47III, Ncol, XcmI, Nhel - 3'
Each restriction site is compatible with many other enzymes, increasing the cloning options.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions, resulting in high levels of steady-state mRNA ${ }^{3}$.
- pMB1 ori is a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- CMV promoter \& enhancer drives the expression of the Zeocin ${ }^{\text {™ }}$ resistance in mammalian cells.
- EM7 is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Sh ble (Zeocin ${ }^{\text {TM }}$ resistance gene): Resistance to Zeocin ${ }^{\text {TM }}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus. The Sh ble gene is driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. Therefore, Zeocin ${ }^{\text {TM }}$ can be used to select stable mammalian cells transfectants and E. coli transformants.
- Human beta-Globin polyA is a strong polyadenylation (pAn) signal placed downstream of Sh ble. The use of beta-globin pAn minimizes interference ${ }^{4}$ and possible recombination events with the SV40 polyadenylation signal.

1. Kim DW. et al., 1990. Use of the human elongation factor 1a promoter as a versatile and efficient expression system. Gene 91(2):217-23. 2. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 3. Carswell S. \& Alwine JC., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 4. Yu J. \& Russell JE., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88.

RELATED PRODUCTS

Product
Zeocin $^{\text {TM }}$
ChemiComp GT116

15J27v40

2201 CCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGC

2301 GTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC
2401 CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGC

ApaLI (2565)
2501
TTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGC

AlwNI (2662)
2601 CTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTA
2701 GGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAA

2801 AAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCA

PacI (2981) SwaI (2990)
2901 AGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCA

EagI (3001)

NotI (3000)
3001 GCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACA
3101 AAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA

