pUNO1-mSTING
 Expression vector containing wild-type isoform mouse of STING
 Catalog code: puno1-mstingwt
 https://www.invivogen.com/puno-sting

For research use only
Version 20E18-MM

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized plasmid DNA
$-2 \times 1 \mathrm{ml}$ blasticidin at $10 \mathrm{mg} / \mathrm{ml}$
Storage and Stability
- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable at least for 1 year.
Store blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. *
*The expiry date is specified on the product label.

Quality control

Plasmid construct has been confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.

- Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE

- Subclone gene into another vector. Two unique restriction sites flank the gene, allowing convenient excision. The 5' site is Agel which is compatible with BspEI, Xmal, NgoMIV and SgrAI. The 3' site is Nhel which is compatible with Xbal, Spel, and AvrlI.
- Stable gene expression in mammalian cells. pUNO1 plasmids can be used directly in transfection experiments both in vitro and in vivo. pUNO1 plasmids contain the blasticidin-resistance gene (bsr) driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. This allows the amplification of the plasmid in E. coli, as well as the selection of stable clones in mammalian cells using the same selective antibiotic. pUNO1 allows high levels of expression and secretion of the gene product.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.
Plasmid amplification and cloning
Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

Blasticidin usage

Blasticidin should be used at $25-100 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied as a $10 \mathrm{mg} / \mathrm{ml}$ colorless solution in HEPES buffer.

PLASMID FEATURES

- Bsr (blasticidin resistance gene): The bsr gene from Bacillus cereus encodes a deaminase that confers resistance to the antibiotic blasticidin. The bsr gene is driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. Therefore, blasticidin can be used to select stable mammalian cells transfectants and E. coli transformants.
- CMV promoter \& enhancer drives the expression of the blasticidin resistance in mammalian cells.
- mouse STING-WT

ORF size: 1137 bp Cloning fragment size: 1148 bp
STING (stimulator of interferon genes; also known as TMEM173, MITA, MPYS, and ERIS) is essential for the IFN response to microbial or selfDNA, and acts as a direct sensor of cyclic dinucleotides (CDNs). Several variants of STING have been described in the human population, as well as various induced mutants of the human and mouse STING genes. Studies have revealed that STING variation can affect CDN recognition and signal transduction. Wild-type mouse STING (mSTINGWT) contains an arginine at position 231, similarly to human wild-type STING (hSTING-WT). Unlike hSTING-WT, mSTING-WT appears to have no preference for the cGAMP isomers ${ }^{1}$ and efficiently binds DMXAA to produce type IIFNs².

- EF-1a/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{3}$ and the 5' untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes for a «house keeping» gene. It is expressed at high levels in all cell cycles and lower levels during GO phase. The promoter is also non-tissue specific; it is highly expressed in all cell types. The R segment and part of the $U 5$ sequence (R-U5') of the HTLV Type 1 Long Terminal Repeat ${ }^{4}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency possibly through mRNA stabilization.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions, resulting in high levels of steady-state mRNA5.
-pMB1 ori is a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- Human beta-Globin polyA is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of beta-globin pAn minimizes interference ${ }^{6}$ and possible recombination events with the SV40 polyadenylation signal.

1. Gao P. et al., 2013. Structure-function analysis of STING activation by $\mathrm{c}\left[\mathrm{G}\left(2^{\prime}, 5^{\prime}\right)\right.$ pA($\left.3^{\prime}, 5^{\prime}\right)$ p] and targeting by antiviral DMXAA. Cell. 154(4):748-62. 2. Conlon J. et al., 2013. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol 190(10):521625. 3. Kim D. et al., 1990. Use of the human elongation factor 1 a promoter as a versatile and efficient expression system. Gene 91(2):217-23. 4. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 5. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 6. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-Globin mRNA. Mol Cell Biol. 21(17):5879-88.

RELATED PRODUCTS

[^0]Selection antibiotic
ant-bl-1
Competent E. coli
gt116-11

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
InvivoGen Hong Kong: +852 3622-3480
E-mail: info@invivogen.com

101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCC

SphI (560)

KasI (535) AgeI (552)
501 TCTGTTCTGCGCCGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGTCAGCATGCCATACTCCAACCTGCATCCAGCCATCCCACGGCC 1. $\mathrm{M} \quad \mathrm{P} \quad \mathrm{Y} \quad \mathrm{S} \quad \mathrm{N} \quad \mathrm{L} \quad \mathrm{H} \quad \mathrm{P} \quad \mathrm{A} \quad \mathrm{I} \quad \mathrm{P} \quad \mathrm{R} \quad \mathrm{P}$ BsrBI (609)
BstEII (604) MscI (641) BamHI (672)
601 CAGAGGTCACCGCTCCAAATATGTAGCCCTCATCTTTCTGGTGGCCAGCCTGATGATCCTTTGGGTGGCAAAGGATCCACCAAATCACACTCTGAAGTAC
 701 CTAGCACTTCACCTAGCCTCGCACGAACTTGGACTACTGTTGAAAAACCTCTGCTGTCTGGCTGAAGAGCTGTGCCATGTCCAGTCCAGGTACCAGGGCA
 BssHII (816) XcmI (836)
801 GCTACTGGAAGGCTGTGCGCGCCTGCCTGGGATGCCCCATCCACTGTATGGCTATGATTCTACTATCGTCTTATTTCTATTTCCTCCAAAACACTGCTGA
 SphI (950) PstI (992)
901 CATATACCTCAGTTGGATGTTTGGCCTTCTGGTCCTCTATAAGTCCCTAAGCATGCTCCTGGGCCTTCAGAGCTTGACTCCAGCGGAAGTCTCTGCAGTC
 BamHI (1091)
1001 TGTGAAGAAAAGAAGTTAAATGTTGCCCACGGGCTGGCCTGGTCATACTACATTGGGTACTTGCGGTTGATCTTACCAGGGCTCCAGGCCCGGATCCGAA
 BsrGI (1151)
BbsI (1145)
1101 TGTTCAATCAGCTACATAACAACATGCTCAGTGGTGCAGGGAGCCGAAGACTGTACATCCTCTTTCCATTGGACTGTGGGGTGCCTGACAACCTGAGTGT
 1201 AGTTGACCCCAACATTCGATTCCGAGATATGCTGCCCCAGCAAAACATCGACCGTGCTGGCATCAAGAATCGGGTTTATTCCAACAGCGTCTACGAGATT
 1301 CTGGAGAACGGACAGCCAGCAGGCGTCTGTATCCTGGAGTACGCCACCCCCTTGCAGACCCTGTTTGCCATGTCACAGGATGCCAAAGCTGGCTTCAGTC
 1401 GGGAGGATCGGCTTGAGCAGGCTAAACTCTTCTGCCGGACACTTGAGGAAATCCTGGAAGATGTCCCCGAGTCTCGAAATAACTGCCGCCTCATTGTCTA
 BstEII (1578) XcmI (1595)
1501 CCAAGAACCCACAGACGGAAACAGTTTCTCACTGTCTCAGGAGGTGCTCCGGCACATTCGTCAGGAAGAAAAGGAGGAGGTTACCATGAATGCCCCCATG
 1601 ACCTCAGTGGCACCTCCTCCCTCCGTACTGTCCCAAGAGCCAAGACTCCTCATCAGTGGTATGGATCAGCCTCTCCCACTCCGCACTGACCTCATCTGAA
 MscI (1706)
NheI (1700)
1701 GCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTA

HpaI (1838) MfeI (1849)

1801 TTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTT

EcoRI (1934)

1901 TTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCT
2001 GAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTT
SapI (2116) SspI (2173) SwaI (2187)
2101 CCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATC

EcoO109I (2248)

2201 ATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGA
2301 ACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTTAGTTCCTGGTGTACTTGAGGGGGATGAGTTCCTCAATGGTGGTTTTGACCAGCTT
 SacI (2448) BstXI (2477)
2401 GCCATTCATCTCAATGAGCACAAAGCAGTCAGGAGCATAGTCAGAGATGAGCTCTCTGCACATGCCACAGGGGCTGACCACCCTGATGGATCTGTCCACC
 2501 TCATCAGAGTAGGGGTGCCTGACAGCCACAATGGTGTCAAAGTCCTTCTGCCCGTTGCTCACAGCAGACCCAATGGCAATGGCTTCAGCACAGACAGTGA

StuI (2612)

3300 ATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCAG G TT A

	BspLU11I (3404)
3398	A TTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATC
3498	ACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCC
3598	GACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTC
3698	ApaLI (3718) GTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACG
3798	ACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTA
3898	CACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGT
3998	AGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGA

EagI (4154)
PacI (4134) SwaI (4143) NotI (4153)
4098 ACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATC AGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTT
4198 GGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTG
4298 CCAGAACATTTCTCTATCGAA

[^0]: Blasticidin
 ChemiComp GT116

