Expression vector containing HAQ isoform human STING (R71H-G230A-R293Q) open reading frame
 Catalog code: puno1-hsting-haq
 https://www.invivogen.com/hsting-haq

For research use only
Version 19K10-MM

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized plasmid DNA
$-2 \times 1 \mathrm{ml}$ blasticidin at $10 \mathrm{mg} / \mathrm{ml}$

Storage and Stability

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable at least for 1 year.
- Store blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. *
*The expiry date is specified on the product label.

Quality control

- Plasmid construct has been confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE

- Subclone gene into another vector. Two unique restriction sites flank the gene, allowing convenient excision. The 5' site is BspEl which is compatible with Agel, Xmal, NgoMIV and SgrAl. The 3' site is Nhel which is compatible with Xbal, Spel, and AvrII.
- Stable gene expression in mammalian cells. pUNO1 plasmids can be used directly in transfection experiments both in vitro and in vivo. pUNO1 plasmids contain the blasticidin-resistance gene (bsr) driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. This allows the amplification of the plasmid in E. coli, as well as the selection of stable clones in mammalian cells using the same selective antibiotic. pUNO1 allows high levels of expression and secretion of the gene product.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

Blasticidin usage

Blasticidin should be used at $25-100 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied at $10 \mathrm{mg} / \mathrm{ml}$ in HEPES buffer.

PLASMID FEATURES

- Bsr (blasticidin resistance gene): The bsr gene from Bacillus cereus encodes a deaminase that confers resistance to the antibiotic blasticidin. The bsr gene is driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. Therefore, blasticidin can be used to select stable mammalian cells transfectants and E. coli transformants.
- CMV promoter \& enhancer drives the expression of the blasticidin resistance in mammalian cells.
- Human STING-HAQ

ORF size: 1140 bp Cloning fragment size: 1150 bp
STING (stimulator of interferon genes; also known as TMEM173, MITA, MPYS, and ERIS) is essential for the IFN response to microbial or selfDNA, and acts as a direct sensor of cyclic dinucleotides (CDNs). CDNs are important messengers in bacteria, affecting numerous responses of the prokaryotic cell, but also in mammalian cells, acting as agonists of the innate immune response. Several non-synonymous variants of STING have been described in the human population. STING-HAQ has been identified as a common haplotype ($\sim 20 \%$ of the human population and found in THP1 cells). HAQ contains three non-synonymous single nucleotide substitutions; R71H, G230A and R293Q. STING-HAQ expresses a STING protein that displays a reduced intrinsic IFN- β stimulatory activity ${ }^{1.2}$ but retains the ability to respond to metazoan and bacterial CDNs ${ }^{2}$.

- EF-1a/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{3}$ and the 5^{\prime} ' untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes for a «house keeping» gene. It is expressed at high levels in all cell cycles and lower levels during GO phase. The promoter is also non-tissue specific; it is highly expressed in all cell types. The R segment and part of the $U 5$ sequence ($R-U 5^{\prime}$) of the HTLV Type 1 Long Terminal Repeat ${ }^{4}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency possibly through mRNA stabilization.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions, resulting in high levels of steady-state mRNAs.
- pMB1 ori is a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- Human beta-Globin polyA is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of beta-globin pAn minimizes interference ${ }^{6}$ and possible recombination events with the SV40 polyadenylation signal.

1. Jin L.et al., 2011. Identification and characterization of a loss-of-function human MPYS variant. Genes Immun. 12(4):263-9. 2. Yi G. et al., 2013. Single nucleotide polymorphisms of human STING can affect Innate immune response to cyclic dinucleotides. PLoS One 8(10):e77846. 3. Kim D. et al., 1990. Use of the human elongation factor 1 a promoter as a versatile and efficient expression system. Gene 91(2):217-23. 4. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 5. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 6. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88.

RELATED PRODUCTS

Product	Description	Cat. Code
Blasticidin	Selection antibiotic	ant-bl-1
ChemiComp GT116	Competent E. coli	gt116-11

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
InvivoGen Hong Kong: +852 3622-3480
E-mail: info@invivogen.com

SgfI (6)

MfeI (82)
1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA
101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCC

401 GGGCCTITGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTCGTIT

BspEI (558)

501 TCTGTTCTGCGCCGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGCTCCGGACAGCATGCCCCACTCCAGCCTGCATCCATCCATCCC 1) M P H S S L H P S I P Bsp120I (617)

BstEII (657)

601 GTGTCCCAGGGGTCACGGGGCCCAGAAGGCAGCCTTGGTTCTGCTGAGTGCCTGCCTGGTGACCCTTTGGGGGCTAGGAGAGCCACCAGAGCACACTCTC 11. C P R G H G A Q K A A L V L L S A C L V T L W G L G E P P SexAI (704)
Asp718 (701)
Asp718 (794)
Acc65I (701) Acc65I (794)
701 CGGTACCTGGTGCTCCACCTAGCCTCCCTGCAGCTGGGACTGCTGTTAAACGGGGTCTGCAGCCTGGCTGAGGAGCTGCACCACATCCACTCCAGGTACC
 Bsp120I (854)
801 GGGGCAGCTACTGGAGGACTGTGCGGGCCTGCCTGGGCTGCCCCCTCCGCCGTGGGGCCCTGTTGCTGCTGTCCATCTATTTCTACTACTCCCTCCCAAA 78R G S Y W R T V R A C L G C P L R R G A L L L L S I Y F Y Y S L P N SfiI (970) BgIII (995)
901 TGCGGTCGGCCCGCCCTTCACTTGGATGCTTGCCCTCCTGGGCCTCTCGCAGGCACTGAACATCCTCCTGGGCCTCAAGGGCCTGGCCCCAGCTGAGATC 111. A V G P P F T W M L A L L G L S Q A L N I L L G L K G L A P A E I NcoI (1035) EcoRV (1064)
1001 TCTGCAGTGTGTGAAAAAGGGAATTTCAACGTGGCCCATGGGCTGGCATGGTCATATTACATCGGATATCTGCGGCTGATCCTGCCAGAGCTCCAGGCCC 145. S A V C E K G N F N V A H G L A W S Y Y I G Y L R L I L P E L \quad Q A BstBI (1103)
1101 GGATTCGAACTTACAATCAGCATTACAACAACCTGCTACGGGGTGCAGTGAGCCAGCGGCTGTATATTCTCCTCCCATTGGACTGTGGGGTGCCTGATAA 178 R I R T Y N Q H Y N N L L R G A V S Q R L Y I L L P L D C G V P D N 1201 CCTGAGTATGGCTGACCCCAACATTCGCTTCCTGGATAAACTGCCCCAGCAGACCGCTGACCGTGCTGGCATCAAGGATCGGGTITACAGCAACAGCATC
 1301 TATGAGCTTCTGGAGAACGGGCAGCGGGCGGGGCACCTGTGTCCTGGAGTACGCCACCCCCTTGCAGACTTTGTTTGCCATGTCACAATACAGTCAAGCTG
 1401 GCTTTAGCCGGGAGGATAGGCTTGAGCAGGCCAAACTCTTCTGCCAGACACTTGAGGACATCCTGGCAGATGCCCCTGAGTCTCAGAACAACTGCCGCCT
 1501 CATTGCCTACCAGGAACCTGCAGATGACAGCAGCTTCTCGCTGTCCCAGGAGGTTCTCCGGCACCTGCGGCAGGAGGAAAAGGAAGAGGTTACTGTGGGC 311. I A Y Q E P A D D S S F S L S Q E V L R H L R \quad Q E E K E E V T V G BpuAI (1605) BbsI (1605)
1601 AGCTTGAAGACCTCAGCGGTGCCCAGTACCTCCACGATGTCCCAAGAGCCTGAGCTCCTCATCAGTGGAATGGAAAAGCCCCTCCCTCTCCGCACGGATT 345 S L K T S A V P S T S T M S Q E P E L L I S G M E K P L P L R T D MscI (1714)
NheI (1708)
1701 TCTCTTGAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTG 378 F S •

HpaI (1846) MfeI (1857)

1801 TGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGG

EcoRI (1942)

1901 GAGGTTITITAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAAT
2001 CCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAG
SspI (2181) SwaI (2195)
2101 TGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTA
2201 AATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGA
2301 ACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTTAGTTCCTGGTGTACTTGAGGGGGATGAGTTCCTCAATGGTGGTTTTG 141 - N R T Y K L P I L E E I T T K BstXI (2485)
2401 ACCAGCTTGCCATTCATCTCAATGAGCACAAAGCAGTCAGGAGCATAGTCAGAGATGAGCTCTCTGCACATGCCACAGGGGCTGACCACCCTGATGGATC 124 V L K G N M E I L V F C D P A Y D S I L E R C M G C P S 2501 TGTCCACCTCATCAGAGTAGGGGTGCCTGACAGCCACAATGGTGTCAAAGTCCTTCTGCCCGTTGCTCACAGCAGACCCAATGGCAATGGCTTCAGCACA
 StuI (2620)
2601 GACAGTGACCCTGCCAATGTAGGCCTCAATGTGGACAGCAGAGATGATCTCCCCAGTCTTGGTCCTGATGGCCGCCCCCGACATGGTGCTTGTTGTCCTCA 58. V TV R G I Y A E I HVA S I I E G T K T R I A A G V H H K N D E

```
                                    BspHI (2770)
                                    BpuAI (2766)
                                    BbsI (2766)
                                    XmnI (2762)
2 7 0 1 ~ T A G A G C A T G G T G A T C T T C T C A G T G G C G A C C T C C A C C A G C T C C A G A T C C T G C T G A G A G A T G T T G A A G G T C T T C A T G A T G G C C C T C C T A T A G T G A G T C G T A T ~
    24 Y L M T I K E T A V E V L E L D Q Q S I N F T K M
                                    AseI (2828)
2 8 0 1 ~ T A T A C T A T G C C G A T A T A C T A T G C C G A T G A T T A A T T G T C A A A A C A G C G T G G A T G G C G T C T C C A G C T T A T C T G A C G G T T C A C T A A A C G A G C T C T G C T T A T A T ~
                    SpeI (2983)
2 9 0 1 ~ A G A C C T C C C A C C G T A C A C G C C T A C C G C C C A T T T G C G T C A A T G G G G C G G A G T T G T T A C G A C A T T T G G A A A G T C C C G T T G A T T T A C T A G T C A A A A C A A A C T ~
    -
3 0 0 1 ~ C C C A T T G A C G T C A A T G G G G T G G A G A C T T G G A A A T C C C C G T G A G T C A A A C C G C T A T C C A C G C C C A T T G A T G T A C T G C C A A A A C C G C A T C A T C A T G G T A A T A ~
    SnaBI (3111)
3 1 0 1 ~ G C G A T G A C T A A T A C G T A G A T G T A C T G C C A A G T A G G A A A G T C C C A T A A G G T C A T G T A C T G G G C A T A A T G C C A G G C G G G C C A T T T A C C G T C A T T G A C G T C A A ~
    NdeI (3216)
3 2 0 1 ~ T A G G G G G C G T A C T T G G C A T A T G A T A C A C T T G A T G T A C T G C C A A G T G G G C A G T T T A C C G T A A A T A C T C C A C C C A T T G A C G T C A A T G G A A A G T C C C T A T T G G ~
3 3 0 1 ~ C G T T A C T A T G G G A A C A T A C G T C A T T A T T G A C G T C A A T G G G C G G G G G T C G T T G G G C G G T C A G C C A G G C G G G C C A T T T A C C G T A A G T T A T G T A A C G C C T G C A ~
PciI (3412)
    PacI (3402) BspLU11I (3412)
3 4 0 1 ~ G G T T A A T T A A G A A C A T G T G A G C A A A A G G C C A G C A A A A G G C C A G G A A C C G T A A A A A G G C C G C G T T G C T G G C G T I T T T C C A T A G G C T C C G C C C C C C T G A C G A ~
3 5 0 1 ~ G C A T C A C A A A A A T C G A C G C T C A A G T C A G A G G T G G C G A A A C C C G A C A G G A C T A T A A A G A T A C C A G G C G T I T C C C C C T G G A A G C T C C C T C G T G C G C T C T C C T ~
3 6 0 1 ~ G T T C C G A C C C T G C C G C T T A C C G G A T A C C T G T C C G C C T T T C T C C C T T C G G G A A G C G T G G C G C T T T C T C A T A G C T C A C G C T G T A G G T A T C T C A G T T C G G T G T ~
```


ApaLI (3726)

```
3701 AGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAG
3801 ACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTAC
3901 GGCTACACTAGAAGAACAGTATITGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCG
4001 CTGGTAGCGGTGGTT11TTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCA
```


EagI (4162)

```
PacI (4142) SwaI (4151) NotI (4161)
4101 GTGGAACGAAAACTCACGTTAAGGGATTITGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGT
4201 GTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGC 4301 AGGTGCCAGAACATITCTCTATCGAA
```

