pUNO1-hSTING-H232
 Expression vector containing H 232 isoform human STING (R232H) open reading frame
 Catalog code: puno1-hsting-h232
 https://www.invivogen.com/hsting-h232

For research use only
Version 19K10-MM

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of Iyophilized plasmid DNA
$-2 \times 1 \mathrm{ml}$ blasticidin at $10 \mathrm{mg} / \mathrm{ml}$
Storage and Stability
- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable at least for 1 year.
Store blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. *
*The expiry date is specified on the product label.
Quality control
Plasmid construct has been confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE

- Subclone gene into another vector. Two unique restriction sites flank the gene, allowing convenient excision. The 5' site is BspEl which is compatible with Agel, Xmal, NgoMIV and SgrAI. The 3' site is Nhel which is compatible with Xbal, Spel, and Avrll.
- Stable gene expression in mammalian cells. pUNO1 plasmids can be used directly in transfection experiments both in vitro and in vivo. pUNO1 plasmids contain the blasticidin-resistance gene (bsr) driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. This allows the amplification of the plasmid in E. coli, as well as the selection of stable clones in mammalian cells using the same selective antibiotic. pUNO1 allows high levels of expression and secretion of the gene product.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

Blasticidin usage

Blasticidin should be used at $25-100 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied at $10 \mathrm{mg} / \mathrm{ml}$ in HEPES buffer.

PLASMID FEATURES

- Bsr (blasticidin resistance gene): The bsr gene from Bacillus cereus encodes a deaminase that confers resistance to the antibiotic blasticidin. The bsr gene is driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. Therefore, blasticidin can be used to select stable mammalian cells transfectants and E. coli transformants.
- CMV promoter \& enhancer drives the expression of the blasticidin resistance in mammalian cells.
- Human STING-R232H

ORF size: 1140 bp Cloning fragment size: 1181 bp
STING (stimulator of interferon genes; also known as TMEM173, MITA, MPYS, and ERIS) is essential for the IFN response to microbial or selfDNA, and acts as a direct sensor of cyclic dinucleotides (CDNs). CDNs are important messengers in bacteria, affecting numerous responses of the prokaryotic cell, but also in mammalian cells, acting as agonists of the innate immune response. Several non-synonymous variants of STING have been described in the human population. R232H has been identified as a natural variant allele of STING occurring in $\sim 14 \%$ of the human population ${ }^{1}$. H232 contains a single amino acid substitution R232H. The R232H isoform has a diminished response to bacterial and metazoan CDNs when compared to the wild-type allele ${ }^{1,2}$. R232H has been the most commonly used human STING allele in published structural studies.

- EF-1a/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{3}$ and the 5^{\prime} untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes for a «house keeping» gene. It is expressed at high levels in all cell cycles and lower levels during G0 phase. The promoter is also non-tissue specific; it is highly expressed in all cell types. The R segment and part of the U5 sequence (R-U5') of the HTLV Type 1 Long Terminal Repeat ${ }^{4}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency possibly through mRNA stabilization.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions, resulting in high levels of steady-state mRNA ${ }^{5}$.
- pMB1 ori is a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- Human beta-Globin polyA is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of beta-globin pAn minimizes interference ${ }^{6}$ and possible recombination events with the SV40 polyadenylation signal.

1. Yi G. et al., 2013. Single nucleotide polymorphisms of human STING can affect Innate immune response to cyclic dinucleotides. PLoS One 8(10):e77846. 2. Diner E. et al., 2013. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3(5):1355-61. 3. Kim D. et al., 1990. Use of the human elongation factor 1a promoter as a versatile and efficient expression system. Gene 91(2):217-23. 4. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 5. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 6. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88.

RELATED PRODUCTS

Selection antibiotic Competent E. coli
ant-bl-1 gt116-11

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
InvivoGen Hong Kong: +852 3622-3480
E-mail: info@invivogen.com

\title{

PvuI (7)
 Sgfi (6)
 MfeI (82)
 1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA
 101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCG

NgoMIV (441)
 NgoMI (441)
 NaeI (441)

404 CCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTG

3spEI (558)

505 TTCTGCGCCGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGCTCCGGACAGCATGCCCCACTCCAGCCTGCATCCATCCATCCCGTGTC Bsp120I (617) 1. $M \quad \begin{array}{lllllllllll} & \mathrm{H} & H & S & S & L & H & P & S & I & P\end{array}$ Asp718I (701)
606 CCAGGGGTCACGGGGCCCAGAAGGCAGCCTTGGTTCTGCTGAGTGCCTGCCTGGTGACCCTTTGGGGGCTAGGAGAGCCACCAGAGCACACTCTCCGGTAC
 Asp718I (794) 707 CTGGTCCTCCACCTAGCCTCCCTGCAGCTGGGACTGCTGTTAAACGGGGTCTGCAGCCTGGCTGAGGAGCTGCGCCACATCCACTCCAGGTACCGGGGCA
 Bsp120I (854)
807 GCTACTGGAGGACTGTGCGGGCCTGCCTGGGCTGCCCCCTCCGCCGTGGGGCCCTGTTGCTGCTGTCCATCTATTTCTACTACTCCCTCCCAAATGCGGTC
 SfiI (970) BglII (995)
908 GGCCCGCCCTTCACTTGGATGCTTGCCCTCCTGGGCCTCTCGCAGGCACTGAACATCCTCCTGGGCCTCAAGGGCCTGGCCCCAGCTGAGATCTCTGCAGT
 NcoI (1035) EcoRV (1064)

BstBI (1103)
Ecorv (1064) AsuII (1103)
(GGATATCTGCGGCTGATCCTGCCAGAGCTCCAGGCCCGGATTCGAA 147* C E E K $\mathrm{G} \quad \mathrm{N} \quad \mathrm{F} \quad \mathrm{N} \quad \mathrm{V}$ 1110 CTTACAATCAGCATTACAACAACCTGCTACGGGGTGCAGTGAGCCAGCGGCTGTATATTCTCCTCCCATTGGACTGTGGGGTGCCTGATAACCTGAGTATG
 AgeI (1252)
1211 GCTGACCCCAACATTCGCTTCCTGGATAAACTGCCCCAGCAGACCGGTGACCATGCTGGCATCAAGGATCGGGTTTACAGCAACAGCATCTATGAGCTTCT

1312 GGAGAACGGGCAGCGGGCGGGCACCTGTGTCCTGGAGTACGCCACCCCCTTGCAGACTTTGTTTGCCATGTCACAATACAGTCAAGCTGGCTTTAGCCGGG

1413 AGGATAGGCTTGAGCAGGCCAAACTCTTCTGCCGGACACTTGAGGACATCCTGGCAGATGCCCCTGAGTCTCAGAACAACTGCCGCCTCATTGCCTACCAG
 1514 GAACCTGCAGATGACAGCAGCTTCTCGCTGTCCCAGGAGGTTCTCCGGCACCTGCGGCAGGAGGAAAAGGAAGAGGTTACTGTGGGCAGCTTGAAGACCTC 316 1615 AGCGGTGCCCAGTACCTCCACGATGTCCCAAGAGCCTGAGCTCCTCATCAGTGGAATGGAAAAGCCCCTCCCTCTCCGCACGGATTTCTCTTGAGACCCAG
 MscI (1745)
NheI (1739)
1716 GGTCACCAGGCCAGAGCCTCCAGTGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTT

HpaI (1877) MfeI (1888)

1817 TATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTC

EcoRI (1973)

1918 AGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAG
2019 CCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGA

2119 GTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTC
SwaI (2226)
2220 AGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTT
2321 GGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTTAGTTCCTGGTGTACTTGAGGGGGATGAGTTCCTCAAT 141 • N R T Y K L P I L E E I BstXI (2516)
2422 GGTGGTTTTGACCAGCTTGCCATTCATCTCAATGAGCACAAAGCAGTCAGGAGCATAGTCAGAGATGAGCTCTCTGCACATGCCACAGGGGCTGACCACCC
 2523 TGATGGATCTGTCCACCTCATCAGAGTAGGGGTGCCTGACAGCCACAATGGTGTCAAAGTCCTTCTGCCCGTTGCTCACAGCAGACCCAATGGCAATGGCT
 StuI (2651)
Eco147I (2651)
2624 TCAGCACAGACAGTGACCCTGCCAATGTAGGCCTCAATGTGGACAGCAGAGATGATCTCCCCAGTCTTGGTCCTGATGGCCGCCCCGACATGGTGCTTGTT

BspHI (2801)

XmnI (2793)
2725 GTCCTCATAGAGCATGGTGATCTTCTCAGTGGCGACCTCCACCAGCTCCAGATCCTGCTGAGAGATGTTGAAGGTCTTCATGATGGCCCTCCTATAGTGAG

VspI (2859)
AseI (2859)
2826 TCGTATTATACTATGCCGATATACTATGCCGATGATTAATTGTCAAAACAGCGTGGATGGCGTCTCCAGC T TATCTGACGGTTCACTAAACGAGCTCTGC

3026 CAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCATCATCATG

SnaBI (3142)
Eco105I (3142)
3126 GTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGAC

NdeI (3247)

3227 GTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTA SdaI (3425)
3328 TTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCC

PacI (3433) BspLU11I (3443)
3428 TGCAG G TT AA TTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCT
3527 GACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTC
3628 TCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGG ApaLI (3757)
3729 TGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTA
3830 AGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTA
3931 CGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCG
4032 CTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAG
EagI (4193)
PacI (4173) SwaI (4182) NotI (4192)
4133 TGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATC AGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTG
4233 TGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAG 4334 GTGCCAGAACATTTCTCTATCGAA

