Expression vector containing the wild-type isoform human STING open reading frame

Catalog code: puno1-hstingwt
https://www.invivogen.com/puno-sting
For research use only
Version 20E18-MM

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized plasmid DNA
$-2 \times 1 \mathrm{ml}$ blasticidin at $10 \mathrm{mg} / \mathrm{ml}$
Storage and Stability
- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable at least for 1 year.
Store blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. ${ }^{*}$
*The expiry date is specified on the product label.
Quality control
- Plasmid construct has been confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE

- Subclone gene into another vector. Two unique restriction sites flank the gene, allowing convenient excision. The 5' site is BspEl which is compatible with Agel, Xmal, NgoMIV and SgrAl. The 3' site is Nhel which is compatible with Xbal, Spel, and AvrII.
- Stable gene expression in mammalian cells. pUNO1 plasmids can be used directly in transfection experiments both in vitro and in vivo. pUNO1 plasmids contain the blasticidin-resistance gene (bsr) driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. This allows the amplification of the plasmid in E. coli, as well as the selection of stable clones in mammalian cells using the same selective antibiotic. pUNO1 allows high levels of expression and secretion of the gene product.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

Blasticidin usage

Blasticidin should be used at $25-100 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied as a $10 \mathrm{mg} / \mathrm{ml}$ colorless solution in HEPES buffer.

PLASMID FEATURES

- Bsr (blasticidin resistance gene): The bsr gene from Bacillus cereus encodes a deaminase that confers resistance to the antibiotic blasticidin. The bsr gene is driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. Therefore, blasticidin can be used to select stable mammalian cells transfectants and E. coli transformants.
- CMV promoter \& enhancer drives the expression of the blasticidin resistance in mammalian cells.
- human STING

ORF size: 1140 bp Cloning fragment size: 1181 bp
STING (stimulator of interferon genes; also known as TMEM173, MITA, MPYS, and ERIS) is essential for the IFN response to microbial or self-DNA, and acts as a direct sensor of cyclic dinucleotides (CDNs). CDNs are important messengers in bacteria, affecting numerous responses of the prokaryotic cell, but also in mammalian cells, acting as agonists of the innate immune response. Several non-synonymous variants of STING have been described in the human population. The prevalent human STING isoform ($\sim 60 \%$ of the human population) contains an arginine at position 232 (R232) and is thus considered as wild-type ${ }^{1.2}$. The hSTING-WT isoform is preferentially activated by $2^{\prime} 5^{\prime}$ linkage-containing cGAMP isomers ${ }^{3}$.

- EF-1/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{4}$ and the 5^{\prime} untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes for a «house keeping» gene. It is expressed at high levels in all cell cycles and lower levels during GO phase. The promoter is also non-tissue specific; it is highly expressed in all cell types. The R segment and part of the U5 sequence (R-U5') of the HTLV Type 1 Long Terminal Repeat ${ }^{5}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency possibly through mRNA stabilization.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions, resulting in high levels of steady-state mRNA.
-pMB1 ori is a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- Human beta-Globin polyA is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of beta-globin pAn minimizes interference ${ }^{7}$ and possible recombination events with the SV40 polyadenylation signal.

1. Jin L. et al., 2011. Identification and characterization of a loss-of-function human MPYS variant. Genes Immun. 12(4):263-9. 2. Yi G. et al., 2013. Single nucleotide polymorphisms of human STING can affect Innate immune response to cyclic polymorphisms of huma Sindeotides. PLoS One 8(10): 77846 . 3. Gao P. et al., 2013. Structure-function dinucleotides. PING activation by c[G($\left.\left.2^{\prime}, 5^{\prime}\right) \mathrm{GA}\left(3^{\prime}, 5^{\prime}\right) \mathrm{p}\right]$ and targeting by antiviral DMXAA. Cell. 154(4):748-62.4. Kim D. et al., 1990. Use of the human elongation factor 1 a promoter as a versatile and efficient expression system. Gene 91(2):21723. 5 Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 6. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 7. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88.

RELATED PRODUCTS

$\stackrel{100}{\longmapsto}$

PvuI (7)
Sgfi (6)
MfeI (82)
1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA
101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCC

Asp718I (701) Asp718I (794)
701 CGGTACCTGGTCCTCCACCTAGCCTCCCTGCAGCTGGGACTGCTGTTAAACGGGGTCTGCAGCCTGGCTGAGGAGCTGCGCCACATCCACTCCAGGTACC

Bsp120I (854)
801 GGGGCAGCTACTGGAGGACTGTGCGGGCCTGCCTGGGCTGCCCCCTCCGCCGTGGGGCCCTGTTGCTGCTGTCCATCTATTTCTACTACTCCCTCCCAAA

SfiI (970) BgIII (995)
901 TGCGGTCGGCCCGCCCTTCACTTGGATGCTTGCCCTCCTGGGCCTCTCGCAGGCACTGAACATCCTCCTGGGCCTCAAGGGCCTGGCCCCAGCTGAGATC

NcoI (1035) EcoRV (1064)
1001 TCTGCAGTGTGTGAAAAAGGGAATTTCAACGTGGCCCATGGGCTGGCATGGTCATATTACATCGGATATCTGCGGCTGATCCTGCCAGAGCTCCAGGCCC

BstBI (1103)
AsuII (1103)
1101 GGATTCGAACTTACAATCAGCATTACAACAACCTGCTACGGGGTGCAGTGAGCCAGCGGCTGTATATTCTCCTCCCATTGGACTGTGGGGTGCCTGATAA

AgeI (1252)
1201 CCTGAGTATGGCTGACCCCAACATTCGCTTCCTGGATAAACTGCCCCAGCAGACCGGTGACCGTGCTGGCATCAAGGATCGGGTTTACAGCAACAGCATC

1301 TATGAGCTTCTGGAGAACGGGCAGCGGGCGGGCACCTGTGTCCTGGAGTACGCCACCCCCTTGCAGACTTTGTTTGCCATGTCACAATACAGTCAAGCTG

1401 GCTTTAGCCGGGAGGATAGGCTTGAGCAGGCCAAACTCTTCTGCCGGACACTTGAGGACATCCTGGCAGATGCCCCTGAGTCTCAGAACAACTGCCGCCT

1501 CATTGCCTACCAGGAACCTGCAGATGACAGCAGCTTCTCGCTGTCCCAGGAGGTTCTCCGGCACCTGCGGCAGGAGGAAAAGGAAGAGGTTACTGTGGGC

1601 AGCTTGAAGACCTCAGCGGTGCCCAGTACCTCCACGATGTCCCAAGAGCCTGAGCTCCTCATCAGTGGAATGGAAAAGCCCCTCCCTCTCCGCACGGATT

MscI (1745)
NheI (1739)
1701 TCTCTTGAGACCCAGGGTCACCAGGCCAGAGCCTCCAGTGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGC
378 F S •
HpaI (1877) MfeI (1888)
1801 AGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCA

EcoRI (1973)

1901 TTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAATACAGCATAGCAAAAC
2001 TTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGC
2101 CTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTC

SspI (2212) SwaI (2226)

2201 CCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAA
2301 TATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTTAGTTCCTGGTGTACTT
2401 GAGGGGGATGAGTTCCTCAATGGTGGTTTTGACCAGCTTGCCATTCATCTCAATGAGCACAAAGCAGTCAGGAGCATAGTCAGAGATGAGCTCTCTGCAC
 BstXI (2516)
2501 ATGCCACAGGGGCTGACCACCCTGATGGATCTGTCCACCTCATCAGAGTAGGGGTGCCTGACAGCCACAATGGTGTCAAAGTCCTTCTGCCCGTTGCTCA


```
                                    StuI (2651)
                    Eco147I (2651)
2601 CAGCAGACCCAATGGCAATGGCTTCAGCACAGACAGTGACCCTGCCAATGTAGGCCTCAATGTGGACAGCAGAGATGATCTCCCCAGTCTTGGTCCTGAT
```



```
2701 GGCCGCCCCGACATGGTGCTTGTTGTCCTCATAGAGCATGGTGATCTTCTCAGTGGCGACCTCCACCAGCTCCAGATCCTGCTGAGAGATGTTGAAGGTC \27m)
```



```
                                    VspI (2859)
            BspHI (2801) AseI (2859)
2 8 0 1 ~ T T C A T G A T G G C C C T C C T A T A G T G A G T C G T A T T A T A C T A T G C C G A T A T A C T A T G C C G A T G A T T A A T T G T C A A A A C A G C G T G G A T G G C G T C T C C A G C ~ T ~ T A T ~
    14K M < < <
2900 CTGACGGTTCACTAAACGAGCTCTGCTTATATAGACCTCCCACCGTACACGCCTACCGCCCATTTGCGTCAATGGGGCGGAGTTGTTACGACATTTTGGA
    SpeI (3014)
3 0 0 0 ~ A A G T C C C G T T G A T T T A C T A G T C A A A A C A A A C T C C C A T T G A C G T C A A T G G G G T G G A G A C T T G G A A A T C C C C G T G A G T C A A A C C G C T A T C C A C G C C C A T T G ~
                                    SnaBI (3142)
                    Eco105I (3142)
3 0 9 9 ~ A T G T A C T G C C A A A A C C G C A T C A T C A T G G T A A T A G C G A T G A C T A A T A C G T A G A T G T A C T G C C A A G T A G G A A A G T C C C A T A A G G T C A T G T A C T G G G C A T A A T ~
                                    NdeI (3247)
3 1 9 9 \text { GCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTC}
3 2 9 9 ~ C A C C C A T T G A C G T C A A T G G A A A G T C C C T A T T G G C G T T A C T A T G G G A A C A T A C G T C A T T A T T G A C G T C A A T G G G C G G G G G T C G T T G G G C G G T C A G C C A G G C ~
    SdaI (3425)PacI (3433) BspLU11I (3443)
3 3 9 9 ~ G G G C C A T T T A C C G T A A G T T A T G T A A C G C C T G C A G ~ G T T ~ A A ~ T T A A G A A C A T G T G A G C A A A A G G C C A G C A A A A G G C C A G G A A C C G T A A A A A G G C C G C G T T G ~
    < <<<
3 4 9 7 \text { CTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGG}
3 5 9 7 \text { CGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTC}
```


ApaLI (3757)

```
3697 TCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTA
3797 TCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCG
3897 GTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
3997 AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAA
EagI (4193)
NotI (4192)
```



```
4196 GCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAA
4296 CAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA
```

