pUNO1-hSTING- β

Expression vector containing an isoform of human STING lacking exons 1-5
 Catalog code: puno1-hsting-beta
 https://www.invivogen.com/hsting-beta

For research use only
Version 19K10-MM

PRODUCT INFORMATION

Contents

$20 \mu \mathrm{~g}$ of lyophilized plasmid DNA
$-2 \times 1 \mathrm{ml}$ blasticidin at $10 \mathrm{mg} / \mathrm{ml}$
Storage and Stability

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable at least for 1 year.
- Store blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. ${ }^{*}$
*The expiry date is specified on the product label.
Quality control
- Plasmid construct has been confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE

- Subclone gene into another vector. Two unique restriction sites flank the gene, allowing convenient excision. The 5' site is BspEl which is compatible with Agel, Xmal, NgoMIV and SgrAI. The 3' site is Nhel which is compatible with Xbal, Spel, and AvrII.
- Stable gene expression in mammalian cells. pUNO1 plasmids can be used directly in transfection experiments both in vitro and in vivo. pUNO1 plasmids contain the blasticidin-resistance gene (bsr) driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. This allows the amplification of the plasmid in E. coli, as well as the selection of stable clones in mammalian cells using the same selective antibiotic. pUNO1 allows high levels of expression and secretion of the gene product.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

Blasticidin usage

Blasticidin should be used at $25-100 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied at $10 \mathrm{mg} / \mathrm{ml}$ in HEPES buffer.

PLASMID FEATURES

- Bsr (blasticidin resistance gene): The bsr gene from Bacillus cereus encodes a deaminase that confers resistance to the antibiotic blasticidin. The bsr gene is driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. Therefore, blasticidin can be used to select stable mammalian cells transfectants and E. coli transformants.
- CMV promoter \& enhancer drives the expression of the blasticidin resistance in mammalian cells.
- Human STING- β

ORF size: 696 bp Cloning fragment size: 737 bp
STING (stimulator of interferon genes; also known as TMEM173, MITA, MPYS, and ERIS) is essential for the interferon (IFN) response to microbial or self-DNA, and acts as a direct sensor of cyclic dinucleotides (CDNs). CDNs are important messengers in bacteria, affecting numerous responses of the prokaryotic cell, but also in mammalian cells, acting as agonists of the innate immune response. hSTING- β, discovered in THP-1 cells, is an alternatively spliced isoform of hSTING lacking exons 1-5. It has been reported that hSTING- β acts as a dominant negative mutant of STING by suppressing IFN-regulatory factor and NF-kB activation by CDNs ${ }^{1}$. It has been proposed that hSTING- β inhibits IFN production by interacting with and sequestering STING, TBK1 and CDNs.

- EF-1 $\alpha /$ HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{2}$ and the 5^{\prime} untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes for a «house keeping» gene. It is expressed at high levels in all cell cycles and lower levels during GO phase. The promoter is also non-tissue specific; it is highly expressed in all cell types. The R segment and part of the U5 sequence (R-U5') of the HTLV Type 1 Long Terminal Repeat ${ }^{3}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency possibly through mRNA stabilization.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions, resulting in high levels of steady-state mRNA4.
- pMB1 ori is a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- Human beta-Globin polyA is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of beta-globin pAn minimizes interference ${ }^{5}$ and possible recombination events with the SV40 polyadenylation signal.

1. Wang PH. et al., 2018. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res. 46(8):4054-4071. 2. Kim D. et al., 1990. Use of the human elongation factor 1a promoter as a versatile and efficient expression system. Gene 91(2):217-23. 3. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 4. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 5. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88.

RELATED PRODUCTS

Blasticidin
ChemiComp GT116

Selection antibiotic Competent E. coli
ant-bl-1 gt116-11

2201 CCAATGTAGGCCTCAATGTGGACAGCAGAGATGATCTCCCCAGTCTTGGTCCTGATGGCCGCCCCGACATGGTGCTTGTTTGTCCTCATAGAGCATGGTGA 531G I Y A E I H V A S I I E G T K T R I A A G V H H K N D E Y L M T I BspHI (2357) BbsI (2353)
XmnI (2349)
2301 TCTTCTCAGTGGCGACCTCCACCAGCTCCAGATCCTGCTGAGAGATGTTGAAGGTCTTCATGATGGCCCTCCTATAGTGAGTCGTATTATACTATGCCGA

AseI (2415)
2401 TATACTATGCCGATGATTAATTGTCAAAACAGCGTGGATGGCGTCTCCAGCIIATCTGACGGTTCACTAAACGAGCTCTGCTTATATAGACCTCCCACCG
SpeI (2570)
2501 TACACGCCTACCGCCCATTTGCGTCAATGGGGCGGAGTTGTTACGACATTTTGGAAAGTCCCGTTGATTTACTAGTCAAAACAAACTCCCATTGACGTCA

2601 ATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCATCATCATGGTAATAGCGATGACTAATA
2701 CGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACT
NdeI (2803)
2801 TGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGGGA
 SdaI (2981) BspLU11I
2901 ACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAAITAAGAA
3001 CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAAT
3101 CGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGC
3201 CGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTC
ApaLI (3313)
3301 CAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCG
3401 CCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAA
3501 GAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGG
3601 TTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAAC
EagI (3749)
PacI (3729) SwaI (3738) NotI (3748)
3701 TCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTT
3801 GTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACA
3901 TTTCTCTATCGAA

