An expression plasmid coding for a CpG -free cytotoxic/resistance fusion gene
Catalog code: psetz-hsv1tksh

For research use only<br>Version 20L01-MM

## PRODUCT INFORMATION

## Contents:

- $20 \mu \mathrm{~g}$ of pSELECT-zeo-HSV1-tk::Sh provided as lyophilized DNA
- 1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$

Storage and stability:

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable for up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.


## Quality control:

- Plasmid construct has been confirmed by restriction analysis and full-length ORF sequencing.
- Plasmid DNA was purified by ion exchange chromatography.


## GENERAL PRODUCT USE

pSelect-zeo plasmids contain genes that have been chemically synthesized. The DNA sequence of these genes was modified by optimizing the codon usage, reducing or eliminating the CpG motifs and avoiding secondary DNA structures without changing the amino acid sequence of the wild type proteins.

## pSELECT-zeo plasmids may be used:

To subclone the synthetic gene into another vector. To facilitate subcloning, the HSV1-tk::Sh gene is flanked by two unique restriction sites: Nco I at the 5' end that encompasses the Start codon, and Nhe I at the 3'end.
As a gene reporter plasmid. pSELECT-zeo is a mammalian expression plasmid selectable in E. coli and mammalian cells with Zeocin ${ }^{\text {TM }}$, as the Sh ble gene in the second expression casssette is driven by the eukaryote CMV enhancer/promoter in tandem with the bacterial EM7 promoter.

## PLASMID FEATURES

- ori: a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.


## First expression cassette

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1alpha (EF-1 $\alpha$ ) core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF-1 $\alpha$ promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF- $1 \alpha$ core promoter to enhance stability of RNA.
- HSV1-tk::Sh CpG-free: InvivoGen has engineered a fusion gene between the Herpes Simplex Virus 1 (HSV1) thymidine kinase gene and the Sh ble gene conferring Zeocin ${ }^{\text {TN }}$ resistance. Both genes have been modified and contain no CpG motifs.
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state $\mathrm{mRNA}^{3}$.


## Second expression cassette

- CMV enh/prom: The human cytomegalovirus immediate-early gene 1 promoter/enhancer was originally isolated from the Towne strain and was found to be stronger than any other viral promoters.
- EM7 is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in $E$. coli.
- Zeo: Resistance to Zeocin ${ }^{\mathrm{nt}}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus The Sh ble gene is driven by the CMV enhancer/promoter in tandem with the bacterial EM7 promoter allowing selection in both mammalian cells and E. coli.
- BGlo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.

1. Kim D. et al., 1990. Use of the human elongation factor $1 \alpha$ promoter as a versatile and efficient expression system Gene 91(2):217-23. 2. Takebe, Y. et al., 1988. R alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell Biol. 1:466-72. 3. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol. Cell Biol. 9(10):4248-58. 4. Yu J. \& Russell J. 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol Cell Biol. 21(17):5879-88.

## METHODS

## Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

## Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or in other commonly used laboratory E. coli strains, such as DH5 $\alpha$.

## Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for $E$. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\text {TM }}$-resistant mammalian cells.


NotI (-1)
1 GCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTITTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACA SgfI (171)
101 AAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAAGGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCA

201 GAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATG
301 TCGTGTACTGGCTCCGCCTITTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTITTTCGCAACGGGTTTGCCGCCAG
HindIII (410)
401 AACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCT

501 CCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCGTCTAGGTAAGITTAAAGCTCAGGTCGAGACCGGGCCTITGTCCGGCGCTCCCTTGGAGCCTACCTA

601 GACTCAGCCGGCTCTCCACGCTITGCCTGACCCTGCTTGCTCAACTCTACGTCTITGTITCGTITTCTGTTCTGCGCCGITACAGATCCAAGCTGTGACC

## NcoI (725)

## AgeI (717)

SphI (750)
701 GGCGCCTACCTGAGATCACCGGTCACCATGGCTTCTTACCCTGGACACCAGCATGCTTCTGCCTTTGACCAGGCTGCCAGATCCAGGGGCCACTCCAACA 1* M A S Y P G H Q H A S A F D Q A A R S R G H S N 801 GGAGAACTGCCCTAAGACCCAGAAGACAGCAGGAAGCCACTGAGGTGAGGCCTGAGCAGAAGATGCCAACCCTGCTGAGGGTGTACATTGATGGACCTCA 25 R R T A L R P R R Q Q E A T E V R P E Q K M P T L L R V Y I D G P H 901 TGGCATGGGCAAGACCACCACCACTCAACTGCTGGTGGCACTGGGCTCCAGGGATGACATTGTGTATGTGCCTGAGCCAATGACCTACTGGAGAGTGCTA
58 G M G K T T T T Q L L V A L G S R D D I V Y V P E P M T Y W R V L 1001 GGAGCCTCTGAGACCATTGCCAACATCTACACCACCCAGCACAGGCTGGACCAGGGAGAAATCTCTGCTGGAGATGCTGCTGTGGTGATGACCTCTGCCC 92* G A S E T I A N I Y T T Q H R L D Q G E I S A G D A A V V M T S A 1101 AGATCACAATGGGAATGCCCTATGCTGTGACTGATGCTGTTCTGGCTCCTCACATTGGAGGAGAGGCTGGCTCTTCTCATGCCCCTCCACCTGCCCTGAC 125 Q I T M G M P Y A V T D A V L A P H I G G E A G S S H A P P P A L T Acc65I (1253)
1201 CCTGATCTITGACAGACACCCCATTGCAGCCCTGCTGTGCTACCCAGCAGCAAGGTACCTCATGGGCTCCATGACCCCACAGGCTGTGCTGGCTITTGTG 158. L I F D R H P I A A L L C Y P A A R Y L M G S M T P Q A V L A F V 1301 GCCCTGATCCCTCCAACCCTCCCTGGCACCAACATTGTTCTGGGAGCACTGCCTGAAGACAGACACATTGACAGGCTGGCAAAGAGGCAGAGACCTGGAG 192. A L I P P T L P G T N I V L G A L P E D R H I D R L A K R Q R P G 1401 AGAGACTGGACCTGGCCATGCTGGCTGCAATCAGAAGGGTGTATGGACTGCTGGCAAACACTGTGAGATACCTCCAGTGTGGAGGCTCTTGGAGAGAGGA 225 E R L D L A M L A A I R R V Y G L L A N T V R Y L Q C G G S W R E D 1501 CTGGGGACAGCTCTCTGGAACAGCAGTGCCCCCTCAAGGAGCTGAGCCCCAGTCCAATGCTGGTCCAAGACCCCACATTGGGGACACCCTGTTCACCCTG 258 W G Q L S G T A V P P Q G A E P Q S N A G P R P H I G D T L F T L 1601 TTCAGAGCCCCTGAGCTGCTGGCTCCCAATGGAGACCTGTACAATGTGTTTGCCTGGGCTCTGGATGTTCTAGCCAAGAGGCTGAGGTCCATGCATGTGT 292 F R A P E L L A P N G D L Y N V F A W A L D V L A K R L R S M H V 1701 TCATCCTGGACTATGACCAGTCCCCTGCTGGATGCAGAGATGCTCTGCTGCAACTAACCTCTGGCATGGTGCAGACCCATGTGACCACCCCTGGCAGCAT 325. F I L D Y D Q S P A G C R D A L L Q L T S G M V Q T H V T T P G S I 1801 CCCCACCATCTGTGACCTAGCCAGAACCTTTGCCAGGGAGATGGGAATCTCTGGAGCCAATGGAGTCATGGCCAAGTTGACCAGTGCTGTCCCAGTGCTC 358 P T I C D L A R T F A R E M G I S G A N G V M A K L T S A V P V L 1901 ACAGCCAGGGATGTGGCTGGAGCTGTTGAGTTCTGGACTGACAGGTTGGGGTTCTCCAGAGATTTTGTGGAGGATGACTTTGCAGGTGTGGTCAGAGATG
 2001 ATGTCACCCTGTTCATCTCAGCAGTCCAGGACCAGGTGGTGCCTGACAACACCCTGGCTTGGGTGTGGGTGAGAGGACTGGATGAGCTGTATGCTGAGTG 425 D V T L F I S A V Q D Q V V P D N T L A W V W V R G L D E L Y A E W 2101 GAGTGAGGTGGTCTCCACCAACTTCAGGGATGCCAGTGGCCCTGCCATGACAGAGATTGGAGAGCAGCCCTGGGGGAGAGAGTTTGCCCTGAGAGACCCA 458. S E V V S T N F R D A S G P A M T E I G E Q P W G R E F A L R D P NheI (2254)
EcoRI (2248)
2201 GCAGGCAACTGTGTGCACTTTGTGGCAGAGGAGCAGGACTGAGGATAAGAATTCGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAA 492* A G N C V H F V A E E Q D •

## Hpal (2392)

2301 CCACAACTAGAATGCAGTGAAAAAATGCTTTATTGGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAA

2401 CAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTITTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAAT
2501 ACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCA
2601 TTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCAC
2701 TGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCT
2801 CAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTAT

2901 CCTCAGTCCTGCTCCTCTGCCACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGG 1251 - D Q E E A V F H V C N G A P D R L A F E R G W P Q E G I E T M A 3001 CCGGCCCGGAGGCGTCCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTC 921 P G S A D R F N T S V V E S W E A Y L E D L G R V W V W A L T N D SmaI (3183)
3101 CGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGC 591 P V V Q D Q V A S I F L T V D D R V V G A F D D E V F D R S F G L
3201 CGGTCGGTCCAGAACTCGACCGCTCCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGATGGCCCTCCTATAGTGAGTCG 254R D T W F E V A G A V D R A T L V P V A S T L K A M

AseI (3331)
3301 TATTATACTATGCCGATATACTATGCCGATGATTAATTGTCAA $A$ ACAGCGTGGATGGCGTCTCCAGCTTATCTGACGGTTCACTAAACGAGCTCTGCTTA
$\qquad$
PacI (3905) BspLU11I (3915)
3901 GCAGGITAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGA

4001 CGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCT

4101 CCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGG

4201 TGTAGGTCGITCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGITCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGT

4301 AAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAAC

4401 TACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCA

4501 CCGCTGGTAGCGGTGGTाTाTTGTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC
PacI (4645)
4601 TCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCA

