A plasmid encoding a synthetic CpG-free firefly Luc-Zeocin resistance fusion gene

Catalog code: psetz-lucsh

For research use only
Version 20K30-MM

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pSELECT-zeo-LucSh plasmid provided as lyophilized DNA
-1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

Product is shipped at room temperature. Lyophilized DNA should be resuspended upon receipt and stored at $-20^{\circ} \mathrm{C}$. Lyophilized DNA is stable for 3 months at $-20^{\circ} \mathrm{C}$. Resuspended DNA is stable more than one year at $-20^{\circ} \mathrm{C}$.
Store Zeocin ${ }^{\mathrm{TM}}$ at $4{ }^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

Plasmid construct has been confirmed by restriction analysis and sequencing. Plasmid DNA was purified by ion exchange chromatography and lyophilized.

GENERAL PRODUCT USE

pSelect-zeo plasmids contain genes that have been chemically synthesized. The DNA sequence of these genes was modified by optimizing the codon usage, reducing or eliminating the CpG motifs and avoiding secondary DNA structures without changing the amino acid sequence of the wild type proteins.
pSelect-zeo plasmids may be used:
To subclone the synthetic gene into another vector. To facilitate subcloning, the LucSh gene is flanked by two unique restriction sites: Nco I at the 5' end that encompasses the Start codon, and Nhe I at the 3'end.

As a gene reporter plasmid. pSelect-zeo is a mammalian expression plasmid selectable in E. coli and mammalian cells with Zeocin ${ }^{\mathrm{ms}}$, as the Sh ble gene in the second expression casssette is driven by the eukaryote CMV enhancer/promoter in tandem with the bacterial EM7 promoter.

PLASMID FEATURES

First expression cassette

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1alpha (EF-1 α) core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF-1 α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF- 1α core promoter to enhance stability of RNA.
- LucSh: Synthetic LucSh fusion gene (LucSh- $\Delta \mathrm{CpG}$): InvivoGen has engineered a fusion between the firefly luciferase gene and the Sh ble gene conferring Zeocin ${ }^{\text {tw }}$ resistance. Both genes have been modified and contain no CpG, whereas their wildtype counterparts contain 95 and 50 CpG motifs respectively. This fusion exhibits a higher luciferase activity and enables a better and faster selection of Zeocin ${ }^{\mathrm{nxw}}$ resistant clones.
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- ori: a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.

Second expression cassette

- CMV enh/prom: The human cytomegalovirus immediate-early gene 1 promoter/enhancer was originally isolated from the Towne strain and was found to be stronger than any other viral promoters.
- EM7 is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo: Resistance to Zeocin ${ }^{\mathrm{TM}}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus The Sh ble gene is driven by the CMV enhancer/promoter in tandem with the bacterial EM7 promoter allowing selection in both mammalian cells and E. coli.
- BGlo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.

1. Kim, D.W. et al. (1990). Gene 2: 217-223.
2. Takebe, Y. et al. (1988). Mol. Cell Biol. 1: 466-472.
3. Carswell, S. \& Alwine, J.C. (1989). Mol. Cell Biol. 10: 4248-4258.
4. Yu J \& Russell JE. (2001). Mol Cell Biol, 21(17):5879-88.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in 20 μl of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 other commonly used laboratory E. coli strains, such as DH5 α.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\text {TM }}$-resistant mammalian cells..

NotI (-1)
1 GCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACT
68 AACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCA
SgfI (171)
135 AGTGCAGGTGCCAGAACATTTCTCTATCGAAGGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAG

202 AGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAG
269 AAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGG
GGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAA

HindIII (410)
403 CACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCCGCCA

470 TCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCGTC
537 TAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGAC

604 TCAGCCGGCTCTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGT

NcoI (725)
AgeI (717)
671 TCTGCGCCGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGTCACCATGGAGGATG 1. M E D

738 CCAAGAATATTAAGAAAGGCCCTGCCCCATTCTACCCTCTGGAAGATGGCACTGCTGGTGAGCAACT
 805 GCACAAGGCCATGAAGAGGTATGCCCTGGTCCCTGGCACCATTGCCTTCACTGATGCTCACATTGAG 26. H K A M K R Y A L V P G T I A F T D A H I E 872 GTGGACATCACCTATGCTGAATACTTTGAGATGTCTGTGAGGCTGGCAGAAGCCATGAAAAGATATG 49* V D I T Y A E Y F E M S V R L A E A M K R Y 939 GACTGAACACCAACCACAGGATTGTGGTGTGCTCTGAGAACTCTCTCCAGTTCTTCATGCCTGTGTT
 1006 AGGAGCCCTGTTCATTGGAGTGGCTGTGGCCCCTGCCAATGACATCTACAATGAGAGAGAGCTCCTG 93* G A L F I G V A V A P A N D I Y N E R E L L
1073 AACAGCATGGGCATCAGCCAGCCAACTGTGGTCTTTGTGAGCAAGAAGGGCCTGCAAAAGATCCTGA 116* N S M G I S Q P T V V F V S K K G L \quad V K I L 1140 ATGTGCAGAAGAAGCTGCCCATCATCCAGAAGATCATCATCATGGACAGCAAGACTGACTACCAGGG
 1207 CTTCCAGAGCATGTATACCTTTGTGACCAGCCACTTACCCCCTGGCTTCAATGAGTATGACTTTGTG 160. F Q S M Y T F V T S H L P P G F N E Y D F V

1274 CCTGAGAGCTTTGACAGGGACAAGACCATTGCTCTGATTATGAACAGCTCTGGCTCCACTGGACTGC 183* P E S F D R D K T I A L I
1341 CCAAAGGTGTGGCTCTGCCCCACAGAACTGCTTGTGTGAGATTCAGCCATGCCAGAGACCCCATCTT
 1408 TGGCAACCAGATCATCCCTGACACTGCCATCCTGTCTGTGGTTCCATTCCATCATGGCTTTGGCATG 227* G N Q I I P D T A I L S V V P F H H G F G M

Acc65I (1487)
1475 TTCACAACACTGGGGTACCTGATCTGTGGCTTCAGAGTGGTGCTGATGTATAGGTTTGAGGAGGAGC
 1542 TGTTTCTGAGGAGCCTACAAGACTACAAGATCCAGTCTGCCCTGCTGGTGCCCACTCTGTTCAGCTT

1609 CTTTGCCAAGAGCACCCTCATTGACAAGTATGACCTGAGCAACCTGCATGAGATTGCCTCTGGAGGA 294* F A K S T L I D K Y D L S 1676 GCACCCCTGAGCAAGGAGGTGGGTGAGGCTGTGGCAAAGAGGTTCCATCTCCCAGGAATCAGACAGG

1743 GCTATGGCCTGACTGAGACCACCTCTGCCATCCTCATCACCCCTGAAGGAGATGACAAGCCTGGTGC 339. G Y G L T E T T S A I L I T P E G D D K P G A 1810 TGTGGGCAAGGTGGTTCCCTTTTTTGAGGCCAAGGTGGTGGACCTGGACACTGGCAAGACCCTGGGA
 1877 GTGAACCAGAGGGGTGAGCTGTGTGTGAGGGGTCCCATGATCATGTCTGGCTATGTGAACAACCCTG

2413 TGCTGTCCCAGTGCTCACAGCCAGGGATGTGGCTGGAGCTGTTGAGTTCTGGACTGACAGGTTGGGG
562. A V P V L T A R D V A G A V E F W T D R L G
2480 TTCTCCAGAGATTTTGTGGAGGATGACTTTGCAGGTGTGGTCAGAGATGATGTCACCCTGTTCATCT
585* F S R D F V E D D F A G V V R D D V T L F I
2547 CAGCAGTCCAGGACCAGGTGGTGCCTGACAACACCCTGGCTTGGGTGTGGGTGAGAGGACTGGATGA
607. S A V Q D Q V V P D N T L A W V W V R G L D E
2614 GCTGTATGCTGAGTGGAGTGAGGTGGTCTCCACCAACTTCAGGGATGCCAGTGGCCCTGCCATGACA
629. L Y A E W S E V V S T N F R D A S G P A M T
2681 GAGATTGGAGAGCAGCCCTGGGGGAGAGAGTTTGCCCTGAGAGACCCAGCAGGCAACTGTGTGCACT
652 E I G E Q P W G R E F A L R D P A G N C V H
NheI (2782)
EcoRI (2776)

2748 TTGTGGCAGAGGAGCAGGACTGAGGATAAGAATTCGCTAGCTGGCCAGACATGATAAGATACATTGA 674* V A E E Q D •
2815 TGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCT

HpaI (2920)

2882 ATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTA
2949 TGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTAT

EcoRI (3016)
 3016 GGAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCT

3083 GAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACC
3150 TTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATG
3217 TTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCA
3284 TTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCC
3351 CAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGC
3418 TTCTAGCTTATCCTCAGTCCTGCTCCTCTGCCACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAG 125. D Q E E A V F H V C N G A P D R L

3485 GGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAG 1074 A F E R G W P Q E G I E T M A P G S A D R F
3552 TTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCA 84N T S V V E S W E A Y L E D L G R V W V W A L
3619 GGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGACCAC 62. T N D P V V Q D Q V A S I F L T V D D R V V

SmaI (3711)

3686 ACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCT 40. G A F D D E V F D R S F G L R D T W F E V A

3753 CCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGATGGCCCTCCTAT 174G A V D R A T L V P V A S T L K A M

AseI (3859)

3820 agTgagtcgtattatactatgccgatatactatgccgatgattanttgtcanaacagcgtggatggc

