For research use only
Version 20K30-MM

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pSELECT-zeo-LacZ::Sh plasmid provided as lyophilized DNA.
- 1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

Product is shipped at room temperature. Lyophilized DNA should be resuspended upon receipt and stored at $-20^{\circ} \mathrm{C}$. Lyophilized DNA is stable for 3 months at $-20^{\circ} \mathrm{C}$. Resuspended DNA is stable more than one year at $-20^{\circ} \mathrm{C}$.
Store Zeocin ${ }^{\mathrm{TM}}$ at $4{ }^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

Plasmid construct has been confirmed by restriction analysis and sequencing. Plasmid DNA was purified by ion exchange chromatography and lyophilized.

GENERAL PRODUCT USE

pSelect-zeo plasmids contain genes that have been chemically synthesized. The DNA sequence of these genes was modified by optimizing the codon usage, reducing or eliminating the CpG motifs and avoiding secondary DNA structures without changing the amino acid sequence of the wild type proteins.
pSelect-zeo plasmids may be used:
To subclone the synthetic gene into another vector. To facilitate subcloning, the LacZ::Sh gene is flanked by two unique restriction sites: Nco I at the 5' end that encompasses the Start codon, and Nhe I at the 3'end.

As a gene reporter plasmid. pSelect-zeo is a mammalian expression plasmid selectable in E. coli and mammalian cells with Zeocin ${ }^{\mathrm{TN}}$, as the Sh ble gene in the second expression casssette is driven by the eukaryote CMV enhancer/promoter in tandem with the bacterial EM7 promoter.

PLASMID FEATURES

First expression cassette

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1alpha (EF-1 α) core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF-1 α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF- 1α core promoter to enhance stability of RNA.
- LacZ::Sh CpG-free: InvivoGen has engineered a fusion gene between a humanized LacZ gene and the Sh ble gene conferring Zeocin ${ }^{\mathrm{TrN}}$ resistance. Both genes have been modified and contain no CpG motifs. The lacZ gene codes for the enzyme β-galactosidase which catalyzes the hydrolysis of the substrate $\mathrm{X}-\mathrm{Gal}$ to produce a blue color that is easily visualized under a microscope. The CpG-free lacZ gene is ten times more active than the wild-type gene in mammalian cells. This LacZ::Sh fusion gene enables a better and faster selection of Zeocin-resistant clones.
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- ori: a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.

Second expression cassette

- CMV enh/prom: The human cytomegalovirus immediate-early gene 1 promoter/enhancer was originally isolated from the Towne strain and was found to be stronger than any other viral promoters.
- EM7 is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo: Resistance to Zeocin ${ }^{\mathrm{TM}}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus The Sh ble gene is driven by the CMV enhancer/promoter in tandem with the bacterial EM7 promoter allowing selection in both mammalian cells and E. coli.
- BGlo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.

1. Kim, D.W. et al. (1990). Gene 2: 217-223.
2. Takebe, Y. et al. (1988). Mol. Cell Biol. 1: 466-472.
3. Carswell, S. \& Alwine, J.C. (1989). Mol. Cell Biol. 10: 4248-4258.
4. Yu J \& Russell JE. (2001). Mol Cell Biol, 21(17):5879-88.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in 20μ l of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 other commonly used laboratory E. coli strains, such as DH5 α.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\text {TM-resistant mammalian cells. }}$

EagI (1)
NotI (-1)
1 GCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACA
PvuI (172)
Sgfi (171)
101 AAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAAGGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCA

MfeI (247)
201 GAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATG

Psp1406I (368)

301 TCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAG

HindIII (410)

401 AACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCT
501 CCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCGTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTA
601 GACTCAGCCGGCTCTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTACAGATCCAAGCTGTGACC NcoI (725)
BstEII (720)
701 GGCGCCTACCTGAGATCAccggtcaCCATGGACCCTGTTGTGCTGCAAAGGAGAGACTGGGAGAACCCTGGAGTGACCCAGCTCAACAGACTGGCTGCCC

GGAACTCTGAGGAAGCCAGGACAGACAGGCCCAGCCAGCAGCTCAGGTCTCTCAATGGAGAGTGGAGGTTTGCCTGGTT
 NsiI (985)
901 CCCTGCCCCTGAAGCTGTGCCTGAGTCTTGGCTGGAGTGTGACCTCCCAGAGGCTGACACTGTTGTGGTGCCCAGCAACTGGCAGATGCATGGCTATGAT
 1001 GCCCCCATCTACACCAATGTCACCTACCCCATCACTGTGAACCCCCCTTTTGTGCCCACTGAGAACCCCACTGGCTGCTACAGCCTGACCTTCAATGTTG

1101 ATGAGAGCTGGCTGCAAGAAGGCCAGACCAGGATCATCTTTGATGGAGTCAACTCTGCCTTCCACCTCTGGTGCAATGGCAGGTGGGTTGGCTATGGCCA
 1201 AGACAGCAGGCTGCCCTCTGAGTTTGACCTCTCTGCCTTCCTCAGAGCTGGAGAGAACAGGCTGGCTGTCATGGTGCTCAGGTGGTCTGATGGCAGCTAC
 BbsI (1303)
1301 CTGGAAGACCAAGACATGTGGAGGATGTCTGGCATCTTCAGGGATGTGAGCCTGCTGCACAAGCCCACCACCCAGATTTCTGACTTCCATGTTGCCACCA
 1401 GGTTCAATGATGACTTCAGCAGAGCTGTGCTGGAGGCTGAGGTGCAGATGTGTGGAGAACTCAGAGACTACCTGAGAGTCACAGTGAGCCTCTGGCAAGG
 Tth111I (1570)
1501 TGAGACCCAGGTGGCCTCTGGCACAGCCCCCTTTGGAGGAGAGATCATTGATGAGAGAGGAGGCTATGCTGACAGAGTCACCCTGAGGCTCAATGTGGAG
 1601 AACCCCAAGCTGTGGTCTGCTGAGATCCCCAACCTCTACAGGGCTGTTGTGGAGCTGCACACTGCTGATGGCACCCTGATTGAAGCTGAAGCCTGTGATG
 1701 TTGGATTCAGAGAAGTCAGGATTGAGAATGGCCTGCTGCTGCTCAATGGCAAGCCTCTGCTCATCAGGGGAGTCAACAGGCATGAGCACCACCCTCTGCA
 EcoRV (1834) XmnI (1854)
1801 TGGACAAGTGATGGATGAACAGACAATGGTGCAAGATATCCTGCTAATGAAGCAGAACAACTTCAATGCTGTCAGGTGCTCTCACTACCCCAACCACCCT
 1901 CTCTGGTACACCCTGTGTGACAGGTATGGCCTGTATGTTGTTGATGAAGCCAACATTGAGACACATGGCATGGTGCCCATGAACAGGCTCACAGATGACC
 2001 CCAGGTGGCTGCCTGCCATGTCTGAGAGAGTGACCAGGATGGTGCAGAGAGACAGGAACCACCCCTCTGTGATCATCTGGTCTCTGGGCAATGAGTCTGG
 2101 ACATGGAGCCAACCATGATGCTCTCTACAGGTGGATCAAGTCTGTTGACCCCAGCAGACCTGTGCAGTATGAAGGAGGTGGAGCAGACACCACAGCCACA
 2201 GACATCATCTGCCCCATGTATGCCAGGGTTGATGAGGACCAGCCCTTCCCTGCTGTGCCCAAGTGGAGCATCAAGAAGTGGCTCTCTCTGCCTGGAGAGA 492 ScaI (2363)
2301 CCAGACCTCTGATCCTGTGTGAATATGCACATGCAATGGGCAACTCTCTGGGAGGCTTTGCCAAGTACTGGCAAGCCTTCAGACAGTACCCCAGGCTGCA
 2401 AGGAGGATTTGTGTGGGACTGGGTGGACCAATCTCTCATCAAGTATGATGAGAATGGCAACCCCTGGTCTGCCTATGGAGGAGACTTTGGTGACACCCCC
 2501 AATGACAGGCAGTTCTGCATGAATGGCCTGGTCTTTGCAGACAGGACCCCTCACCCTGCCCTCACAGAGGCCAAGCACCAGCAACAGTTCTTCCAGTTCA
 SacI (2659)
2601 GGCTGTCTGGACAGACCATTGAGGTGACATCTGAGTACCTCTTCAGGCACTCTGACAATGAGCTCCTGCACTGGATGGTGGCCCTGGATGGCAAGCCTCT
 2701 GGCTTCTGGTGAGGTGCCTCTGGATGTGGCCCCTCAAGGAAAGCAGCTGATTGAACTGCCTGAGCTGCCTCAGCCAGAGTCTGCTGGACAACTGTGGCTA
 2801 ACAGTGAGGGTGGTTCAGCCCAATGCAACAGCTTGGTCTGAGGCAGGCCACATCTCTGCATGGCAGCAGTGGAGGCTGGCTGAGAACCTCTCTGTGACCC
 2901 TGCCTGCTGCCTCTCATGCCATCCCTCACCTGACAACATCTGAAATGGACTTCTGCATTGAGCTGGGCAACAAGAGATGGCAGTTCAACAGGCAGTCTGG
 3001 CTTCCTGTCTCAGATGTGGATTGGAGACAAGAAGCAGCTCCTCACCCCTCTCAGGGACCAATTCACCAGGGCTCCTCTGGACAATGACATTGGAGTGTCT
 BstXI (3118)
3101 GAGGCCACCAGGATTGACCCAAATGCTTGGGTGGAGAGGTGGAAGGCTGCTGGACACTACCAGGCTGAGGCTGCCCTGCTCCAGTGCACAGCAGACACCC
 3201 TGGCTGATGCTGTTCTGATCACCACAGCCCATGCTTGGCAGCACCAAGGCAAGACCCTGTTCATCAGCAGAAAGACCTACAGGATTGATGGCTCTGGACA
 BsaBI (3300)
3301 GATGGCAATCACAGTGGATGTGGAGGTTGCCTCTGACACACCTCACCCTGCAAGGATTGGCCTGAACTGTCAACTGGCACAGGTGGCTGAGAGGGTGAAC
 BsrGI (3485)
3401 TGGCTGGGCTTAGGCCCTCAGGAGAACTACCCTGACAGGCTGACAGCTGCCTGCTTTGACAGGTGGGACCTGCCTCTGTCTGACATGTACACCCCTTATG
 3501 TGTTCCCTTCTGAGAATGGCCTGAGGTGTGGCACCAGGGAGCTGAACTATGGTCCTCACCAGTGGAGGGGAGACTTCCAGTTCAACATCTCCAGGTACTC
 3601 TCAGCAACAGCTCATGGAAACCTCTCACAGGCACCTGCTCCATGCAGAGGAGGGAACCTGGCTGAACATTGATGGCTTCCACATGGGCATTGGAGGAGAT

