pSELECT-zeo-LacZnls

A plasmid encoding a CpG-free LacZ gene with SV40 nuclear localization signal
Catalog code: psetz-lacznls
For research use only
Version 20K30-MM

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pSELECT-zeo-LacZnls plasmid provided as lyophilized DNA.
- 1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

Product is shipped at room temperature. Lyophilized DNA should be resuspended upon receipt and stored at $-20^{\circ} \mathrm{C}$.
Lyophilized DNA is stable for 3 months at $-20^{\circ} \mathrm{C}$. Resuspended DNA is stable more than one year at $-20^{\circ} \mathrm{C}$.
Store Zeocin ${ }^{\mathrm{TM}}$ at $4{ }^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

Plasmid construct has been confirmed by restriction analysis and sequencing. Plasmid DNA was purified by ion exchange chromatography and lyophilized.

GENERAL PRODUCT USE

pSelect-zeo plasmids contain genes that have been chemically synthesized. The DNA sequence of these genes was modified by optimizing the codon usage, reducing or eliminating the CpG motifs and avoiding secondary DNA structures without changing the amino acid sequence of the wild type proteins.
pSelect-zeo plasmids may be used:
To subclone the synthetic gene into another vector. To facilitate subcloning, the LacZnls gene is flanked by two unique restriction sites: Nco I at the 5' end that encompasses the Start codon, and Nhe I at the 3'end.
As a gene reporter plasmid. pSelect-zeo is a mammalian expression plasmid selectable in E. coli and mammalian cells with Zeocin ${ }^{\mathrm{TM}}$, as the Sh ble gene in the second expression casssette is driven by the eukaryote CMV enhancer/promoter in tandem with the bacterial EM7 promoter.

PLASMID FEATURES

First expression cassette

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1alpha (EF-1 α) core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF-1 α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF- 1α core promoter to enhance stability of RNA.
- LacZnls CpG-free: The lacZ reporter gene codes for the enzyme β-galactosidase which catalyzes the hydrolysis of the substrate X-Gal to produce a blue color that is easily visualized under a microscope. The synthetic lacZ gene engineered by InvivoGen is entirely free of CpG motifs. LacZnls contains a nuclear localization signal of SV40 large T that allows the targeting of the chimeric protein to the nucleus.
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- ori: a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.

Second expression cassette

- CMV enh/prom: The human cytomegalovirus immediate-early gene 1 promoter/enhancer was originally isolated from the Towne strain and was found to be stronger than any other viral promoters.
- EM7 is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
- Zeo: Resistance to Zeocin ${ }^{\text {TM }}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus The Sh ble gene is driven by the CMV enhancer/promoter in tandem with the bacterial EM7 promoter allowing selection in both mammalian cells and E. coli.
- BGlo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.

1. Kim, D.W. et al. (1990). Gene 2: 217-223.
2. Takebe, Y. et al. (1988). Mol. Cell Biol. 1: 466-472.
3. Carswell, S. \& Alwine, J.C. (1989). Mol. Cell Biol. 10: 4248-4258.
4. Yu J \& Russell JE. (2001). Mol Cell Biol, 21(17):5879-88.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 other commonly used laboratory E. coli strains, such as DH5 α.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\text {TM }}$-resistant mammalian cells.

$\stackrel{156}{\longmapsto}$

EagI (1)
NotI (-1)
1 GCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACA
PvuI (172)
Sgfi (171)
101 AAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAAGGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCA
MfeI (247)
201 GAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACG GGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATG
301 TCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAG

HindIII (410)

401 AACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCT
501 CCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCCGTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTA
601 GACTCAGCCGGCTCTCCACGCTTTGCCTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTACAGATCCAAGCTGTGACC
NcoI (725)
BstEII (720)
701 GGCGCCTACCTGAGATCAccggtcaCCATGGACCCTGTTGTGCTGCAAAGGAGAGACTGGGAGAACCCTGGAGTGACCCAGCTCAACAGACTGGCTGCCC
 801 ACCCTCCCTTTGCCTCTTGGAGGAACTCTGAGGAAGCCAGGACAGACAGGCCCAGCCAGCAGCTCAGGTCTCTCAATGGAGAGTGGAGGTTTGCCTGGTT
 901 CCCTGCCCCTGAAGCTGTGCCTGAGTCTTGGCTGGAGTGTGACCTCCCAGAGGCAGTTCCCAAGAAGAAGAGGAAAGTTGAGGCTGACACTGTTGTGGTG

BstXI (1000) Ppu10I (1015)

1001 CCAAGCAACTGGCAGATGCATGGCTATGATGCCCCCATCTACACCAATGTCACCTACCCCATCACTGTGAACCCCCCTTTTGTGCCCACTGAGAACCCCA
 1101 CTGGCTGCTACAGCCTGACCTTCAATGTTGATGAGAGCTGGCTGCAAGAAGGCCAGACCAGGATCATCTTTGATGGAGTCAACTCTGCCTTCCACCTCTG
 1201 GTGCAATGGCAGGTGGGTTGGCTATGGCCAAGACAGCAGGCTGCCCTCTGAGTTTGACCTCTCTGCCTTCCTCAGAGCTGGAGAGAACAGGCTGGCTGTC
 BpuAI (1333)
BbsI (1333)
1301 ATGGTGCTCAGGTGGTCTGATGGCAGCTACCTGGAAGACCAAGACATGTGGAGGATGTCTGGCATCTTCAGGGATGTGAGCCTGCTGCACAAGCCCACCA
 SexAI (1426)
1401 CCCAGATTTCTGACTTCCATGTTGCCACCAGGTTCAATGATGACTTCAGCAGAGCTGTGCTGGAGGCTGAGGTGCAGATGTGTGGAGAACTCAGAGACTA
 1501 CCTGAGAGTCACAGTGAGCCTCTGGCAAGGTGAGACCCAGGTGGCCTCTGGCACAGCCCCCTTTGGAGGAGAGATCATTGATGAGAGAGGAGGCTATGCT
 Tth111I (1600)
1601 GACAGAGTCACCCTGAGGCTCAATGTGGAGAACCCCAAGCTGTGGTCTGCTGAGATCCCCAACCTCTACAGGGCTGTTGTGGAGCTGCACACTGCTGATG
 1701 GCACCCTGATTGAAGCTGAAGCCTGTGATGTTGGATTCAGAGAAGTCAGGATTGAGAATGGCCTGCTGCTGCTCAATGGCAAGCCTCTGCTCATCAGGGG
 EcoRV (1864) XmnI (1884)
1801 AGTCAACAGGCATGAGCACCACCCTCTGCATGGACAAGTGATGGATGAACAGACAATGGTGCAAGATATCCTGCTAATGAAGCAGAACAACTTCAATGCT
 1901 GTCAGGTGCTCTCACTACCCCAACCACCCTCTCTGGTACACCCTGTGTGACAGGTATGGCCTGTATGTTGTTGATGAAGCCAACATTGAGACACATGGCA
 2001 TGGTGCCCATGAACAGGCTCACAGATGACCCCAGGTGGCTGCCTGCCATGTCTGAGAGAGTGACCAGGATGGTGCAGAGAGACAGGAACCACCCCTCTGT
 2101 GATCATCTGGTCTCTGGGCAATGAGTCTGGACATGGAGCCAACCATGATGCTCTCTACAGGTGGATCAAGTCTGTTGACCCCAGCAGACCTGTGCAGTAT 458* I I W S L G N E S G H G A N \quad H 2201 GAAGGAGGTGGAGCAGACACCACAGCCACAGACATCATCTGCCCCATGTATGCCAGGGTTGATGAGGACCAGCCCTTCCCTGCTGTGCCCAAGTGGAGCA 492 E G G G A D T T A T D I I C \quad I ScaI (2393)
2301 TCAAGAAGTGGCTCTCTCTGCCTGGAGAGACCAGACCTCTGATCCTGTGTGAATATGCACATGCAATGGGCAACTCTCTGGGAGGCTTTGCCAAGTACTG 525 I K K W 2401 GCAAGCCTTCAGACAGTACCCCAGGCTGCAAGGAGGATTTGTGTGGGACTGGGTGGACCAATCTCTCATCAAGTATGATGAGAATGGCAACCCCTGGTCT
 2501 GCCTATGGAGGAGACTTTGGTGACACCCCCAATGACAGGCAGTTCTGCATGAATGGCCTGGTCTTTGCAGACAGGACCCCTCACCCTGCCCTCACAGAGG

2601 CCAAGCACCAGCAACAGTTCTTCCAGTTCAGGCTGTCTGGACAGACCATTGAGGTGACATCTGAGTACCTCTTCAGGCACTCTGACAATGAGCTCCTGCA
 2701 CTGGATGGTGGCCCTGGATGGCAAGCCTCTGGCTTCTGGTGAGGTGCCTCTGGATGTGGCCCCTCAAGGAAAGCAGCTGATTGAACTGCCTGAGCTGCCT 658. W M V A L D G K \quad P \quad L A 2801 CAGCCAGAGTCTGCTGGACAACTGTGGCTAACAGTGAGGGTGGTTCAGCCCAATGCAACAGCTTGGTCTGAGGCAGGCCACATCTCTGCATGGCAGCAGT
 2901 GGAGGCTGGCTGAGAACCTCTCTGTGACCCTGCCTGCTGCCTCTCATGCCATCCCTCACCTGACAACATCTGAAATGGACTTCTGCATTGAGCTGGGCAA 725. W R L A E N L S V T L P A A 3001 CAAGAGATGGCAGTTCAACAGGCAGTCTGGCTTCCTGTCTCAGATGTGGATTGGAGACAAGAAGCAGCTCCTCACCCCTCTCAGGGACCAATTCACCAGG 758 K R W Q F N R Q S G F L BstXI (3148)
3101 GCTCCTCTGGACAATGACATTGGAGTGTCTGAGGCCACCAGGATTGACCCAAATGCTTGGGTGGAGAGGTGGAAGGCTGCTGGACACTACCAGGCTGAGG 792* A P L D N D I G V S E A T R I D P 3201 CTGCCCTGCTCCAGTGCACAGCAGACACCCTGGCTGATGCTGTTCTGATCACCACAGCCCATGCTTGGGCAGCACCAAGGCAAGACCCTGTTCATCAGCAG 825 A A L L Q C T A D T L A D A V L I T T A H A BsabI (3330)
3301 AAAGACCTACAGGATTGATGGCTCTGGACAGATGGCAATCACAGTGGATGTGGAGGTTGCCTCTGACACACCTCACCCTGCAAGGATTGGCCTGAACTGT
 3401 CAACTGGCACAGGTGGCTGAGAGGGTGAACTGGCTGGGCTTAGGCCCTCAGGAGAACTACCCTGACAGGCTGACAGCTGCCTGCTTTGACAGGTGGGACC

BsrGI (3515)

3501 TGCCTCTGTCTGACATGTACACCCCTTATGTGTTCCCTTCTGAGAATGGCCTGAGGTGTGGCACCAGGGAGCTGAACTATGGTCCTCACCAGTGGAGGGG
 3601 AGACTTCCAGTTCAACATCTCCAGGTACTCTCAGCAACAGCTCATGGAAACCTCTCACAGGCACCTGCTCCATGCAGAGGAGGGAACCTGGCTGAACATT
 Acc65I (3779)
3701 GATGGCTTCCACATGGGCATTGGAGGAGATGACTCTTGGTCTCCTTCTGTGTCTGCTGAGTTCCAGTTATCTGCTGGCAGGTACCACTATCAGCTGGTGT
 NheI (3820)
3801 GGTGCCAGAAGTAAACCTGAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTAT 1025* C Q K •

4201 TTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTC

SwaI (4307)
4301 AGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGT

DraIII (4486)

4401 TGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCTCTGCCACAAAGTGCACGC 127• • • D Q E E A V F H V C EagI (4506)
4501 AGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGTTCGTGGACAC
 SexAI (4673)
4601 GACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAAC


```
                SgrAI (4722) SmaI (4749) BsrBI (4785)
```

4701 AGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCTCCGGCGACGT

BssHII (4801) \quad AseI
4801 CGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGATGGCCCTCCTATAGTGAGTCGTATTATACTATGCCGATATACTATGCCGATGATT
141 R A T L V P V A S T L K A
SacI (4954)
4901 AATTGTCAAAACAGCGTGGATGGCGTCTCCAGCTTATCTGACGGTTCACTAAACGAGCTCTGCTTATATAGACCTCCCACCGTACACGCCTACCGCCCAT
$\mathbf{5 1 0 1}$ AATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCATCATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAG
NdeI (5285)
5201 TAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTG
5301 ATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTGAC
PacI (5471)
PstI (5464)
SdaI (5463)
5401 GTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCA
5501 GCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGG
5601 TGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGT
5701 CCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCA
5801 CGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACT
5901 GGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCT
6001 GCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCA
6101 GCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTG
6201 GTCATGGCTAGTTAATTAACATTTAAATCA (6211)

