pSELECT-NGFP-zeo

Plasmid for the expression of GFP-N-terminal tagged proteins

Catalog code: psetz-ngfp

For research use only

Version 20K30-MM

PRODUCT INFORMATION

Content:
- 20 µg of pSELECT-NGFP-zeo plasmid provided as lyophilized DNA
- 1 ml of Zeocin™ (100 mg/ml)

Storage and Stability:
Product is shipped at room temperature. Lyophilized DNA should be resuspended upon receipt and stored at -20°C. Lyophilized DNA is stable 3 months at -20°C. Resuspended DNA is stable more than one year at -20°C. Store Zeocin™ at 4 °C or at -20 °C. The expiry date is specified on the product label.

Quality control:
Plasmid construct has been confirmed by restriction analysis and sequencing. Plasmid DNA was purified by ion exchange chromatography and lyophilized.

GENERAL PRODUCT USE

pSELECT plasmids are specifically designed for strong and constitutive expression of a gene in interest in a wide variety of cell lines. They allow the selection of stable transfectants and offer a variety of selectable markers. pSELECT plasmids contain two expression cassettes: the first drives the expression of the gene of interest and the second drives the expression of a large choice of dominant selectable markers for both *E. coli* and mammalian cells. They are both terminating with a strong polyadenylation signal (polyA) that separates the two expression cassettes thus preventing any transcription interference. The late SV40 polyA terminates the transcription of the gene of interest while the human ß-globin polyA terminates the transcription of the selectable marker.

pSELECT-Tag is a new family of expression plasmids designed to generate tagged proteins in order to facilitate their detection and/or purification. pSELECT-Tag features three well-known tags: the green fluorescent protein (GFP) gene, the human influenza hemagglutinin (HA) epitope and the polyhistidine (His) tag. The GFP gene encodes a green fluorescent protein that absorbs blue light (major peak at 480 nm) and emits green light (major peak at 505 nm). pSELECT-Tag plasmids allow to add the tag either at the N or C terminus of the protein of interest. N-terminal tag: the tag encompasses the Start codon and is followed by a multiple cloning site (MCS). pSELECT-NGFP-zeo can also be used as a control plasmid for pSELECT-GFP-LC3.

PLASMID FEATURES

First expression cassette
- **hEF1-HTLV prom** is a composite promoter comprising the Elongation Factor-1α (EF-1α) core promoter and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat. The EF-1α core promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF-1α core promoter to enhance stability of RNA.
- **MCS:** The multiple cloning site contains the following restriction sites: 5' - BamH I, Eco47III, Nco I, Nhel - 3'
 Each restriction site is compatible with many other enzymes.
- **SV40 pAn:** the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.
- **ori:** a minimal *E. coli* origin of replication to limit vector size, but with the same activity as the longer Ori.

Second expression cassette
- **CMV enh/prom:** The human cytomegalovirus immediate-early gene 1 promoter/enhancer was originally isolated from the Towne strain and was found to be stronger than any other viral promoters.
- **EM7:** a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in *E. coli*.
- **Sh ble gene** confers zeocin resistance. The Sh ble gene is driven by the CMV enhancer/promoter in tandem with the bacterial EM7 promoter allowing selection in both mammalian cells and *E. coli*.
- **βGlo pAn:** The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription.

CLONING STRATEGY

For expression of a tagged protein, it is important to ensure to clone your gene-of-interest into the correct reading frame. In general it is recommended to use Bam H I/Nhe I restriction site combination for cloning into plasmids with the N-Tag. For the plasmids with N-Tag, check whether your gene of interest and the start codon of the N-Tag are in the correct reading frame.

Note: The Bam HI restriction site is compatible with Bgl II.

<table>
<thead>
<tr>
<th>Age I</th>
<th>N-Tag</th>
<th>Bam HI</th>
<th>MCS</th>
<th>Nhe I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCGGT</td>
<td>ATG</td>
<td>GGA TCC</td>
<td>GCTAGC</td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If it is not possible to use the Nhe I restriction site, it is possible to another restriction site such as Nco I.

<table>
<thead>
<tr>
<th>Age I</th>
<th>N-Tag</th>
<th>Bam HI</th>
<th>MCS</th>
<th>Ncol</th>
<th>Nhe I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCGGT</td>
<td>ATG</td>
<td>GGA TCC</td>
<td>CATGC GCTAGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alternatively, blunt end cloning can be achieved using the Eco 47 III site, which is downstream of the Bam HI site. Blunt end PCR fragments can be obtained using T4 DNA polymerase or Klenow.
METHODS

Plasmid resuspension
Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at 1 μg/μl, resuspend the DNA in 20 μl of sterile H₂O. Store resuspended plasmid at -20 °C.

Plasmid amplification and cloning
Plasmid amplification and cloning can be performed in *E. coli* GT116 other commonly used laboratory *E. coli* strains, such as DH5α.

Zeocon™ usage
This antibiotic can be used for *E. coli* at 25 μg/ml in liquid or solid media and at 50-200 μg/ml to select Zeocin™-resistant mammalian cells.

References:

RELATED PRODUCTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Catalog Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSELECT-NGFP-blasti</td>
<td>psetb-ngfp</td>
</tr>
<tr>
<td>pSELECT-CGFP-blasti</td>
<td>psetb-cgfp</td>
</tr>
<tr>
<td>pSELECT-CGFP-zeo</td>
<td>psetz-cgfp</td>
</tr>
<tr>
<td>pSELECT-NHA-blasti</td>
<td>psetb-nha</td>
</tr>
<tr>
<td>pSELECT-CHA-blasti</td>
<td>psetb-cha</td>
</tr>
<tr>
<td>pSELECT-NHA-zeo</td>
<td>psetz-nha</td>
</tr>
<tr>
<td>pSELECT-CHA-zeo</td>
<td>psetz-cha</td>
</tr>
<tr>
<td>pSELECT-CHis-blasti</td>
<td>psetb-chis</td>
</tr>
<tr>
<td>pSELECT-NHis-zeo</td>
<td>psetz-nhis</td>
</tr>
<tr>
<td>pSELECT-CHis-zeo</td>
<td>psetz-chis</td>
</tr>
</tbody>
</table>

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
InvivoGen Hong Kong: +852 3622-3480
E-mail: info@invivogen.com
pSELECT-NGFP-zeo
(3879 bp)

- NotI (-1)
- SgfI (171)
- HindIII (410)
- BspHI (725)
- Acc65I (944)

- PacI (3120)
- PstI (3113)
- SdaI (3112)
- BspLU11I (3130)

- hCMV enh/prom
- pMB1 ori

- hEF1/HTLV prom

- GFP-Ntag

- EM7
- Sh ble
- SV40 pAn
- 8Glo pAn
- MCS

- NdeI (2934)
- SnaBI (2829)
- SpeI (2701)
- AseI (2546)
- SmaI (2398)
- SspI (1942)
- EcoRI (1703)
- BamHI (1447)
- Eco47III (1453)
- NcoI (1457)
- NheI (1469)
- PstI (1463)
- NdeI (1469)