Poly(dA:dT) Rhodamine

Rhodamine labeled double-stranded B-DNA

Catalog code: tlrl-patrh https://www.invivogen.com/poly-dadt-rhodamine

For research use only

Version 24F03-MM

PRODUCT INFORMATION Contents

10 ug Polv(dA:dT) Rhodamine

10 µg Poly(dA:dT) khodamine
1.5 ml sterile endotoxin-free water

Storage and stability

- Product is shipped at room temperature. Upon receipt, store at -20 °C.

- Upon resuspension, prepare aliquots and store at -20 °C. Resuspended product is stable for 12 months when properly stored. Avoid repeated freeze-thaw cycles. Protect from light.

Quality control

- Fluorescence has been evaluated on RAW-Blue[™] cells using FACS analysis.

- The absence of bacterial contamination (e.g. lipoproteins and endotoxins) has been confirmed using HEK-Blue^ $\rm TLR2$ and HEK-Blue^ $\rm TLR4$ cells.

DESCRIPTION

Poly(dA:dT) Rhodamine was chemically labeled by covalent coupling of a rhodamine probe containing a reactive alkylating group. This confers fluorescent properties to Poly(dA:dT) with a slight reduction of pattern recognition receptor (PRR) stimulatory activity.

Poly(deoxyadenylic-deoxythymidylic) acid (Poly(dA:dT)) is a repetitive double-stranded DNA (dsDNA) sequence of poly(dA-dT) • poly(dT-dA). It is a synthetic analog of B-DNA. Intracellular poly(dA:dT) is detected by several cytosolic DNA sensors (CDS), such as cGAS, DAI, DDX41, IFI16 and LRRFIP1, triggering the production of type I interferons (IFNs)^{1:3}. This induction of IFN appears to be mediated by the endoplasmic reticulum protein STING^{1:3}. Moreover, poly(dA:dT) is recognized by AIM2 triggering the formation of an inflammasome and the subsequent secretion of IL-1 β and IL-18⁴.

Furthermore, transfected poly(dA:dT) can be transcribed by RNA polymerase III into dsRNA with a 5'-triphosphate moiety (5'ppp-dsRNA) which is a ligand for RIG-I^{5,6}. Thus poly(dA:dT) is indirectly sensed by RIG-I leading to type I IFN production through the adaptor molecule IPS-1 and the TBK1/IRF3 pathway⁷.

1. Unterholzner L., 2013. The interferon response to intracellular DNA: why so many receptors? Immunobiology. 218(11):1312-21. **2. Zhang Z. et al., 2011.** The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 12(10):959-65. **3. Wu J. et al., 2013.** Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 339(6121):826-30. **4. Jones JW. et al., 2010.** Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. PNAS, 107(21):9771-6. **5. Ablasser A. et al., 2009.** RIG-1-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol. 10(10):1065-72. **6. Chiu YH. et al., 2009.** RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-1 pathway. Cell. 138(3):576-91. **7. Takeshita F. & Ishii KJ., 2008.** Intracellular DNA sensors in immunity. Curr Opin Immunol. 20(4):383-8.

TECHNICAL SUPPORT InvivoGen USA (Toll-Free): 888-457-5873 InvivoGen USA (International): +1 (858) 457-5873 InvivoGen Europe: +33 (0) 5-62-71-69-39 InvivoGen Asia: +852 3622-3480 E-mail: info@invivogen.com

CHEMICAL PROPERTIES

CAS number: 86828-69-5 Synonym: Poly(deoxyadenylic-deoxythymidylic) sodium salt Solubility: Water (1 mg/ml)

SPECTRAL PROPERTIES OF RHODAMINE

Excitation λ max: 546 nm Emission λ max: 576 nm

APPLICATIONS

Poly(dA:dT) Rhodamine can be used for various applications:

flow cytometryfluorescent and confocal microscopy

METHODS

Preparation of stock solution (100 µg/ml)

1. Add 100 μl sterile endotoxin-free physiological water (provided) per vial of 10 μg poly(dA:dT) Rhodamine.

2. Mix by pipetting up and down.

Preparation of poly(dA:dT) Rhodamine/cationic lipid complex

In order to facilitate the intracellular delivery, poly(dA:dT) Rhodamine should be complexed with a cationic lipid transfection agent, such as LyoVec[™] (see Related Products on the next page). A protocol for the preparation of a poly(dA:dT) Rhodamine/LyoVec[™] complex is given below:

1. Rehydrate poly(dA:dT) Rhodamine as described above. Rehydrate LyoVec[™] as described on its technical data sheet. Bring poly(dA:dT) Rhodamine and LyoVec[™] to room temperature before use.

2. In a sterile 1.5 ml microfuge tube, mix 1 µg poly(dA:dT) Rhodamine with 100 µl of LyoVec™. Homogenize gently.

3. Incubate at room temperature for 15 minutes to allow the formation of the complex.

Fluorescent in vitro labeling with Poly(dA:dT) Rhodamine

The following protocol describes a method to detect poly(dA:dT) Rhodamine in murine macrophages RAW-Blue™ cells.

1. Add 180 μl of the RAW-Blue[™] cell suspension (500,000 cells/ml) per well of a 96-well plate.

2. Stimulate cells with 100 ng-10 μ g/ml poly(dA:dT) Rhodamine for 16h. 3. Rinse cells with phosphate buffered saline in order to remove free poly(dA:dT) Rhodamine.

4. Analyze fluorescent labeling using flow cytometry, fluorescent or confocal microscopy.

Induction of type I IFNs

Induction of type I IFNs with poly(dA:dT) Rhodamine can be studied in a variety of cells including A549-Dual[™] cells, a reporter cell line derived from the human A549 lung carcinoma cell line. These cells express an IFN regulatory factor (IRF)-inducible Lucia luciferase and an NF-κB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter genes. Stimulation of this cell line with poly(dA:dT)/LyoVec[™] activates the IFN pathway inducing Lucia luciferase production.

1. Prepare poly(dA:dT) Rhodamine/cationic lipid complex as described on the previous page.

2. Stimulate A549-Dual[™] cells with 10 ng/ml to 1 µg/ml of poly(dA:dT) Rhodamine/cationic lipid complex for 18-24 hours.

3. Monitor induction of type I IFNs by measuring the levels of Lucia luciferase in the cell culture supernatants using QUANTI-Luc[™] 4 Lucia/Gaussia, a luciferase detection reagent.

Induction of IL-1 β in THP-1 cells

THP-1 cells are grown in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine and antibacterial antibiotics such as penicillin/streptomycin or Normocin[™]. THP-1 cells are grown in suspension to a density of 1.0x10⁶ cells/ml in tissue culture flasks.

1. Treat THP-1 cells with 0.5 μM (300 ng/ml) PMA for 3 hours at 37°C in 5% CO_2.

<u>Note:</u> PMA treatment increases the phagocytic properties of these cells and induces the production of pro-IL-1 β .

2. Wash cells gently with PBS and add fresh culture medium.

3. After 1 to 3 days, wash cells with PBS and add fresh culture medium.

4. Add 1 to 5 μ g/ml poly(dA:dT) Rhodamine/cationic lipid complex.

5. Incubate from 6 hours to overnight at 37 °C in 5% CO₂.

<u>Note:</u> The production of pro-IL-1 β can be further increased by priming PMA-activated THP-1 cells with LPS.

6. The next day, detect mature IL-1 β in the supernatant of poly(dA:dT)-activated THP-1 cells by Western blot, ELISA or using HEK-Blue^M IL-1 β cells. Theses cells are specifically engineered to detect bioactive IL-1 β .

For a more detailed protocol, see the technical data sheet HEK-Blue™ IL-1β cells, which is available at <u>www.invivogen.com/hek-blue-il1b</u>.

RELATED PRODUCTS

A549-Dual™ cells a549d-nfis	Product	Catalog Code
5'ppp-dsRNAtlrl-3prna5'ppp-dsRNA Controltlrl-3prnacHEK-Blue™ IL-1βhkb-il1bv2LyoVec™lyec-1Normocin™ant-nr1Poly(dA:dT)/LyoVec™tlrl-patcPoly(dG:dC)/LyoVec™tlrl-pgccPoly(dG:dC) nakedtlrl-pgcnOLIANTLeLuc™ 4 Lucia/Gaussiarep-qlc/lg1	A549-Dual [™] cells 5'ppp-dsRNA 5'ppp-dsRNA Control HEK-Blue [™] IL-1β LyoVec [™] Normocin [™] Poly(dA:dT)/LyoVec [™] Poly(dG:dC)/LyoVec [™] Poly(dG:dC) naked OLIANTELLuc [™] 4 Lucia/Gaussia	a549d-nfis tlrl-3prna tlrl-3prnac hkb-il1bv2 lyec-1 ant-nr1 tlrl-patc tlrl-pgcc tlrl-pgcn rep-olc4lg1

TECHNICAL SUPPORT InvivoGen USA (Toll-Free): 888-457-5873 InvivoGen USA (International): +1 (858) 457-5873 InvivoGen Europe: +33 (0) 5-62-71-69-39 InvivoGen Asia: +852 3622-3480 E-mail: info@invivogen.com

