pFUSE-SEAP-mG3Fc

Plasmid designed for the expression of a SEAP-Fc Fusion protein
Catalog \# pfuse-mg3sp
For research use only
Version 20K05-MM

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pFUSE-SEAP-mG3Fc plasmid provided as lyophilized DNA
-1 ml of Zeocin ${ }^{\mathrm{TM}}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable 3 months.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Plasmid DNA was purified by ion exchange chromatography and lyophilized.
- Expression of SEAP-mG3Fc was confirmed by using QUANTI-Blue ${ }^{\text {ru }}$ Solution.
- SEAP-mG3Fc protein was purified using protein G affinity chromatography following manufacturer's protocol.

GENERAL PRODUCT USE

pFUSE-SEAP-Fc plasmids express a SEAP-Fc fusion protein generated by fusing the gene encoding for human secreted alkaline phosphatase (SEAP) and the Fc region of an immunoglobulin G (IgG).
pFUSE-SEAP-Fc plasmids yield high levels of Fc-Fusion proteins. The level of expression is usually in the $\mu \mathrm{g} / \mathrm{mL}$ range. They can be transfected in a variety of mammalian cells, including myeloma cell lines, Chinese hamster ovary (CHO) cells, monkey COS cells and human embryonic kidney (HEK)293 cells. These cells are commonly used in protein purification systems.
SEAP-Fc fusion proteins are secreted and can be easily detected in the supernatant of pFUSE-SEAP-Fc-transfected cells by using QUANTI-Blue ${ }^{\text {mu }}$ Solution, a SEAP detection medium. SEAP-Fc fusion proteins can be easily purified by single-step protein A or protein G affinity chromatography.

PLASMID FEATURES

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor- $1 \alpha(\mathrm{EF}-1 \alpha)$ core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF-1 α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF-1 α core promoter to enhance stability of RNA.
- SEAP-mG3Fc was generated by fusing the gene encoding for human SEAP with the Fc region of mouse IgG3. This region comprises the CH 2 and CH 3 domains of the IgG heavy chain and the hinge region. The hinge serves as a flexible spacer between the SEAP and Fc moieties, allowing each part of the molecule to function independently.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- ori: A minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- CMV enh / hFerL prom: This composite promoter combines the human cytomegalovirus immediate-early gene 1 enhancer and the core promoter of the human ferritin light chain gene. This ubiquitous promoter drives the expression of the Zeocin ${ }^{\text {n" }}$-resistance gene in mammalian cells.
- EM2KC is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli. EM2KC is located within an intron and is spliced out in mammalian cells.
- Zeo: Resistance to Zeocin ${ }^{\text {™ }}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus The same resistance gene confers selection in both mammalian cells and E. coli.
- BGIo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.

1. Kim DW et al. 1990. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. 91(2):217-23.
2. Takebe Y. et al. 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 3. Carswell S. \& Alwine JC. 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58.
3. Yu J. \& Russell JE. 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol Cell Biol. 21(17):5879-88.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or in other commonly used laboratory E. coli strains, such as DH5a.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\text {TM }}$-resistant mammalian cells.

Purification of SEAP-mG3Fc protein

The following protocol describes the purification of SEAP-mG3Fc protein produced by 293 cells using Protein G affinity chromatography.

1- Seed $3.5 \times 10^{6} 293$ cells in a 100 mm plate containing 6 ml of DMEM supplemented with 10% FBS.
2- Transfect cells with $750 \mu \mathrm{l}$ of $\mathrm{pFUSE}-\mathrm{SEAP}-\mathrm{mG} 3 \mathrm{Fc} /$ LyoVec ${ }^{\text {™ }}$ complexes at a ratio of 1:6 prepared by mixing $7.5 \mathrm{\mu g}$ pFUSE-SEAP-mG3Fc and 750μ reconstituted LyoVec ${ }^{\text {" }}$ following the LyoVec ${ }^{\text {™ }}$ protocol.
3- After 16 hours transfection, replace the medium with a serum-free medium such as PRO 293a-CDM (Biowithaker-Cambrex).
4- After 72 hours transfection, collect supernatant.
5- Purifiy protein using Protein G affinity chromatography such as Hi Trap Protein G HP (Amersham Biosciences) following manufacturer's protocol.

RELATED PRODUCTS

Product	Catalog Code
LyoVec $^{\text {™ }}$	lyec-12
QUANTI-Blue ${ }^{\text {TM }}$ Solution	rep-qbs

PvuI (11)

Sgfi (11)
1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA
101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCC

8. L 701 GCCCTGGGTGCCGCCAAGAAGCTGCAGCCTGCACAGACAGCCGCCAAGAACCTCATCATCTTCCTGGGCGATGGGATGGGGGTGTCTACGGTGACAGCTG


```
    BamHI (804)
```

801 CCAGGATCCTAAAAGGGCAGAAGAAGGACAAACTGGGGCCTGAGATACCCCTGGCTATGGACCGCTTCCCATATGTGGCTCTGTCCAAGACATACAATGT
 901 AGACAAACATGTGCCAGACAGTGGAGCCACAGCCACGGCCTACCTGTGCGGGGTCAAGGGCAACTTCCAGACCATTGGCTTGAGTGCAGCCGCCCGCTTT
 BstEII (1081)
1001 AACCAGTGCAACACGACACGCGGCAACGAGGTCATCTCCGTGATGAATCGGGCCAAGAAAGCAGGGAAGTCAGTGGGAGTGGTAACCACCACACGAGTGC
 1101 AGCACGCCTCGCCAGCCGGCACCTACGCCCACACGGTGAACCGCAACTGGTACTCGGACGCCGACGTGCCTGCCTCGGCCCGCCAGGAGGGGTGCCAGGA
 1201 CATCGCTACGCAGCTCATCTCCAACATGGACATTGATGTGATCCTGGGTGGAGGCCGAAAGTACATGTTTCGCATGGGAACCCCAGACCCTGAGTACCCA

1301 GATGACTACAGCCAAGGTGGGACCAGGCTGGACGGGAAGAATCTGGTGCAGGAATGGCTGGCGAAGCGCCAGGGTGCCCGGTATGTGTGGAACCGCACTG
 1401 AGCTCATGCAGGCTTCCCTGGACCCGTCTGTGACCCATCTCATGGGTCTCTTTGAGCCTGGAGACATGAAATACGAGATCCACCGAGACTCCACACTGGA

2751E L \quad M \quad Q A SacII (1558) PshAI (1591) 1501 CCCCTCCCTGATGGAGATGACAGAGGCTGCCCTGCGCCTGCTGAGCAGGAACCCCCGCGGCTTCTTCCTCTTCGTGGAGGGTGGTCGCATCGACCACGGT
 1601 CATCACGAAAGCAGGGCTTACCGGGCACTGACTGAGACGATCATGTTCGACGACGCCATTGAGAGGGCGGGCCAGCTCACCAGCGAGGAGGACACGCTGA

 XcmI (1771)
SacI (1763)

1701 GCCTCGTCACTGCCGACCACTCCCACGTCTTCTCCTTCGGAGGCTACCCCCTGCGAGGGAGCTCCATCTTCGGGCTGGCCCCTGGCAAGGCCCGGGACAG
 StuI (1805)

BsrBI (1884)
1801 GAAGGCCTACACGGTCCTCCTATACGGAAACGGTCCAGGCTATGTGCTCAAGGACGGCGCCCGGCCGGATGTTACCGAGAGCGAGAGCGGGAGCCCCGAG
 BssHII (1967)
1901 TATCGGCAGCAGTCAGCAGTGCCCCTGGACGAAGAGACCCACGCAGGCGAGGACGTGGCGGTGTTCGCGCGCGGCCCGCAGGCGCACCTGGTTCACGGCG
 2001 TGCAGGAGCAGACCTTCATAGCGCACGTCATGGCCTTCGCCGCCTGCCTGGAGCCCTACACCGCCTGCGACCTGGCGCCCCCCGCCGGCACCACCGACGC
 BgIII (2138)
2101 CGCGCACCCGGGGCGGTCCCGGTCCAAGCGTCTGGATAGATCTCCTAGAATACCCAAGCCCAGTACCCCCCCAGGTTCTTCATGCCCACCTGGTAACATC 1. $\mathrm{P} \quad \mathrm{R} \quad \mathrm{I} \quad \mathrm{P} \quad \mathrm{K} \quad \mathrm{P}$
 2201 TTGGGTGGACCATCCGTCTTCATCTTCCCCCCAAAGCCCAAGGATGCACTCATGATCTCCCTAACCCCCAAGGTTACGTGTGTGGTGGTGGATGTGAGCG 20. $\mathrm{L} \quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{P} \quad \mathrm{S} \quad \mathrm{V}$ 542 L $\quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{P} \quad \mathrm{S} \quad \mathrm{V}$ 2301 AGGATGACCCAGATGTCCATGTCAGCTGGTTTGTGGACAACAAAGAAGTACACACAGCCTGGACACAGCCCCGTGAAGCTCAGTACAACAGTACCTTCCG 53 E D D P $\quad \mathrm{D}$
 2401 AGTGGTCAGTGCCCTCCCCATCCAGCACCAGGACTGGATGAGGGGCAAGGAGTTCAAATGCAAGGTCAACAACAAAGCCCTCCCAGCCCCCATCGAGAGA 86. V V V
 Bst1107I (2539)
2501 ACCATCTCAAAACCCAAAGGAAGAGCCCAGACACCTCAAGTATACACCATACCCCCACCTCGTGAACAAATGTCCAAGAAGAAGGTTAGTCTGACCTGCC

2601 TGGTCACCAACTTCTTCTCTGAAGCCATCAGTGTGGAGTGGGAAAGGAACGGAGAACTGGAGCAGGATTACAAGAACACTCCACCCATCCTGGACTCAGA

 2701 TGGGACCTACTTCCTCTACAGCAAGCTCACTGTGGATACAGACAGTTGGTTGCAAGGAGAAATTTTTACCTGCTCCGTGGTGCATGAGGCTCTCCATAAC
 708. G T Y F L Y S K L T V D T D S W L Q G E I F T C S Ball (2851)
NheI (2843)
2801 CACCACACACAGAAGAACCTGTCTCGCTCCCCTGGTAAATGAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAA 220. H H T Q K N L S R S P G K •

742 H H T Q K N L S R S P G K •
HpaI (2983)
2901 TGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCAT AseI (3080) XmnI (3076)

	AseI (3080)
3001	XmnI (3076) TCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTAATTCTAAAATACAGCATA
	$\rightarrow \quad 4$
3101	GCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGT
3201	TTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCC
3301	$\begin{array}{rr\|r\|r\|cc\|} \hline \mathbf{S s p I} \mathbf{(3 3 2 2)} & \text { SwaI (3337) } \\ \text { CACATTCCCTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCC } \end{array}$
3401	TTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTC
	ApaLI (3519)

3501 CTGCTCCTCTGCCACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCG

3601 GAGGCGTCCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCA
 SgrAI (3750)
3701 CCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGT 561 Q D D BsrBI (3817) BssHII (3828) Ball (3865)
3801 CCAGAACTCGACCGCTCCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGATGGCTCCTCctgtcaggagaggaaagaga
 AseI (3964)
3901 agaaggttagtacaattgCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGATTAATTGTCAAACTAGGGCTGCAgggttcatagtgcc HindIII (4090)
4001 acttttcctgcactgccccatctcctgcccaccctttcccaggcatagacagtcagtgacttacCAAACTCACAGGAGGGAGAAGGCAGAAGCTTGAGAC
SacII (4108)
StuI (4192)

4101 AGACCCGCGGGACCGCCGAACTGCGAGGGGACGTGGCTAGGGCGGCTTCTTTTATGGTGCGCCGGCCCTCGGAGGCAGGGCGCTCGGGGAGGCCTAGCGG
BspEI (4248)
4201 CCAATCTGCGGTGGCAGGAGGCGGGGCCGAAGGCCGTGCCTGACCAATCCGGAGCACATAGGAGTCTCAGCCCCCCGCCCCAAAGCAAGGGGAAGTCACG

SpeI (4355)

Bsp120I (4347)
4301 CGCCTGTAGCGCCAGCGTGTTGTGAAATGGGGGCTTGGGGGGGTTGGGGCCCTGACTAGTCAAAACAAACTCCCATTGACGTCAATGGGGTGGAGACTTG
 NdeI (4589)
4501 AGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACT
4601 TGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTG PacI (4778)
SdaI (4771)
4701 ACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGC
4801 CAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGA
4901 GGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCT

ApaLI (5098)

5001 GTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTG
5101 CACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCA
5201 CTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTAT
5301 CTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAG
5401 CAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTT PacI (5518) SwaI (5526) NotI (5534)
5501 TGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTA
5601 ACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA

