# pFUSE-SEAP-hG3Fc 

Plasmid designed for the expression of a SEAP-Fc Fusion protein
Catalog \# pfuse-hg3sp
For research use only
Version 20K04-MM

## PRODUCT INFORMATION

## Content:

- $20 \mu \mathrm{~g}$ of $\mathbf{\text { pFUSE-SEAP-hG3Fc }}$ plasmid provided as lyophilized DNA
- 1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$


## Storage and Stability:

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable 3 months.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.


## Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Plasmid DNA was purified by ion exchange chromatography and lyophilized.
- Expression of SEAP-hG3Fc was confirmed by using QUANTI-Blue ${ }^{\text {Tr }}$ Solution.
- SEAP-hG3Fc protein was purified using protein G affinity chromatography following manufacturer's protocol.


## GENERAL PRODUCT USE

pFUSE-SEAP-Fc plasmids express a SEAP-Fc fusion protein generated by fusing the gene encoding for human secreted alkaline phosphatase (SEAP) and the Fc region of an immunoglobulin G (IgG).
pFUSE-SEAP-Fc plasmids yield high levels of Fc-Fusion proteins. The level of expression is usually in the $\mu \mathrm{g} / \mathrm{mL}$ range. They can be transfected in a variety of mammalian cells, including myeloma cell lines, Chinese hamster ovary ( CHO ) cells, monkey COS cells and human embryonic kidney (HEK)293 cells. These cells are commonly used in protein purification systems.
SEAP-Fc fusion proteins are secreted and can be easily detected in the supernatant of pFUSE-SEAP-Fc-transfected cells by using QUANTI-Blue ${ }^{\text {mu }}$ Solution, a SEAP detection medium. SEAP-Fc fusion proteins can be easily purified by single-step protein $G$ affinity chromatography.

## PLASMID FEATURES

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1 $\alpha\left(\mathrm{EF}-1 \alpha\right.$ ) core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF- $1 \alpha$ promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF-1 $\alpha$ core promoter to enhance stability of RNA.
- SEAP-hG3Fc was generated by fusing the gene encoding for human SEAP with the Fc region of human IgG3. This region comprises the CH 2 and CH 3 domains of the IgG heavy chain and the hinge region. The hinge serves as a flexible spacer between the SEAP and Fc moieties, allowing each part of the molecule to function independently.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- ori: A minimal $E$. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- CMV enh / hFerL prom: This composite promoter combines the human cytomegalovirus immediate-early gene 1 enhancer and the core promoter of the human ferritin light chain gene. This ubiquitous promoter drives the expression of the Zeocin ${ }^{\text {min }}$-resistance gene in mammalian cells.
- EM2KC is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli. EM2KC is located within an intron and is spliced out in mammalian cells.
- Zeo: Resistance to Zeocin ${ }^{\text {m" }}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus The same resistance gene confers selection in both mammalian cells and E. coli.
- BGIo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.

1. Kim DW et al. 1990. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. 91(2):217-23.
2. Takebe Y. et al. 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 3. Carswell S. \& Alwine JC. 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58.
3. Yu J. \& Russell JE. 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol Cell Biol. 21(17):5879-88.

## METHODS

## Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

## Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or in other commonly used laboratory E. coli strains, such as DH5 $\alpha$.

## Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for $E$. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\text {TM }}$-resistant mammalian cells.

## Purification of SEAP-hG3Fc protein

The following protocol describes the purification of SEAP-hG3Fc protein produced by 293 cells using Protein $G$ affinity chromatography.

1- Seed $3.5 \times 10^{6} 293$ cells in a 100 mm plate containing 6 ml of DMEM supplemented with $10 \%$ FBS.
2- Transfect cells with $750 \mu$ l of pFUSE-SEAP-hG3Fc/LyoVec ${ }^{\text {m }}$ complexes at a ratio of $1: 6$ prepared by mixing $7.5 \mu \mathrm{~g}$ pFUSE-SEAP-hG3Fc and $750 \mu \mathrm{l}$ reconstituted LyoVec ${ }^{\text {™ }}$ following the LyoVec ${ }^{\text {TM }}$ protocol.
3-After 16 hours transfection, replace the medium with a serum-free medium such as PRO 293a-CDM (Biowithaker-Cambrex).
4- After 72 hours transfection, collect supernatant.
5- Purifiy protein using Protein G affinity chromatography such as Hi Trap Protein G HP (Amersham Biosciences) following manufacturer's protocol.

## RELATED PRODUCTS

| Product | Catalog Code |
| :--- | :--- |
| LyoVec |  |
| QUANTI-Blue ${ }^{\text {TM }}$ Solution | lyec-12 |
| Qep-qbs |  |



PvuI (7)
Sgfi (6)
1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA
101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCG


606 TGCTGCTGCTGCTGGGCCTGAGGCTACAGCTCTCCCTGGGCATCATCCCAGTTGAGGAGGAGAACCCGGACTTCTGGAACCGCGAGGCAGCCGAGGCCCTG
 707 GGTGCCGCCAAGAAGCTGCAGCCTGCACAGACAGCCGCCAAGAACCTCATCATCTTCCTGGGCGATGGGATGGGGGTGTCTACGGTGACAGCTGCCAGGAT
 NdeI (869) 808 CCTAAAAGGGCAGAAGAAGGACAAACTGGGGCCTGAGATACCCCTGGCTATGGACCGCTTCCCATATGTGGCTCTGTCCAAGACATACAATGTAGACAAAC
 BstXI (966)
909 ATGTGCCAGACAGTGGAGCCACAGCCACGGCCTACCTGTGCGGGGTCAAGGGCAACTTCCAGACCATTGGCTTGAGTGCAGCCGCCCGCTTTAACCAGTGC
 BstEII (1080)
1010 AACACGACACGCGGCAACGAGGTCATCTCCGTGATGAATCGGGCCAAGAAAGCAGGGAAGTCAGTGGGAGTGGTAACCACCACACGAGTGCAGCACGCCTC
 1111 GCCAGCCGGCACCTACGCCCACACGGTGAACCGCAACTGGTACTCGGACGCCGACGTGCCTGCCTCGGCCCGCCAGGAGGGGTGCCAGGACATCGCTACGC
 1212 AGCTCATCTCCAACATGGACATTGATGTGATCCTGGGTGGAGGCCGAAAGTACATGTTTCGCATGGGAACCCCAGACCCTGAGTACCCAGATGACTACAGC
 1313 CAAGGTGGGACCAGGCTGGACGGGAAGAATCTGGTGCAGGAATGGCTGGCGAAGCGCCAGGGTGCCCGGTATGTGTGGAACCGCACTGAGCTCATGCAGGC
 1414 TTCCCTGGACCCGTCTGTGACCCATCTCATGGGTCTCTTTGAGCCTGGAGACATGAAATACGAGATCCACCGAGACTCCACACTGGACCCCTCCCTGATGG


1515 AGATGACAGAGGCTGCCCTGCGCCTGCTGAGCAGGAACCCCCGCGGCTTCTTCCTCTTCGTGGAGGGTGGTCGCATCGACCACGGTCATCACGAAAGCAGG
 1616 GCTTACCGGGCACTGACTGAGACGATCATGTTCGACGACGCCATTGAGAGGGCGGGCCAGCTCACCAGCGAGGAGGACACGCTGAGCCTCGTCACTGCCGA


```
                XcmI (1763)
            SacI (1758)
                                    StuI (1802)
```

1717 CCACTCCCACGTCTTCTCCTTCGGAGGCTACCCCCTGCGAGGGAGCTCCATCTTCGGGCTGGCCCCTGGCAAGGCCCGGGACAGGAAGGCCTACACGGTCC

```
380. H
```

                            BsrBI (1884)
    1818 TCCTATACGGAAACGGTCCAGGCTATGTGCTCAAGGACGGCGCCCGGCCGGATGTTACCGAGAGCGAGAGCGGGAGCCCCGAGTATCGGCAGCAGTCAGCA

```
414
``` BssHII (1966)
1919 GTGCCCCTGGACGAAGAGACCCACGCAGGCGAGGACGTGGCGGTGTTCGCGCGCGGCCCGCAGGCGCACCTGGTTCACGGCGTGCAGGAGCAGACCTTCAT
 2020 AGCGCACGTCATGGCCTTCGCCGCCTGCCTGGAGCCCTACACCGCCTGCGACCTGGCGCCCCCCGCCGGCACCACCGACGCCGCGCACCCGGGGCGGTCCC
 BstXI (2123) BgIII (2137)
2121 GGTCCAAGCGTCTGGATAGATCTGACACACCTCCCCCGTGCCCAAGGTGCCCAGCACCTGAACTCCTGGGAGGACCGTCAGTCTTCCTCTTCCCCCCAAAA 1. D 515: R \(\quad \mathrm{S} \quad \mathrm{K}\) Pmil (2259)
2222 CCCAAGGATACCCTTATGATTTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCACGAAGACCCCGAGGTCCAGTTCAAGTGGTACGTGGA
27. \(\mathrm{P} \quad \mathrm{K}\)
 2323 CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTTCCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGG
60 \(\quad \mathrm{G} \quad \mathrm{V} \quad \mathrm{E} \quad \mathrm{V}\)

2423 CTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAACCAAAGGACAGCCCCGAGAACCACA

 BsrGI (2525)
2524 GGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAG




3936 ATACTATGCCAATGATTAATTGTCAAACTAGGGCTGCAgggttcatagtgccacttttcctgcactgccccatctcctgcccaccctttcccaggcataga
\begin{tabular}{|c|c|}
\hline 4037 & \[
\begin{gathered}
\text { HindIII (4076) } \\
\text { cagtcagtgacttacCAAACTCACAGGAGGGAGAAGGCAGAAGCTTGAGACAGACCCGCGGGACCGCCGAACTGCGAGGGGACGTGGCTAGGGCGGCTTCT }
\end{gathered}
\] \\
\hline & 4 \\
\hline 4138 & StuI (4176) Bser
TTTATGGTGCGCCGGCCCTCGGAGGCAGGGCGCTCGGGGAGGCCTAGCGGCCAATCTGCGGTGGCAGGAGGCGGGGCCGAAGGCCGTGCCTGACCAATCCG \\
\hline 4239 & GAGCACATAGGAGTCTCAGCCCCCCGCCCCAAAGCAAGGGGAAGTCACGCGCCTGTAGCGCCAGCGTGTTGTGAAATGGGGGCTTGGGGGGGTTGGGGCCC \\
\hline 4340 & SpeI (4341)
TGACTAGTCAAAACAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAAC \\
\hline 4441 & \begin{tabular}{l}
SnaBI (4469) \\
CGCATCATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTT
\end{tabular} \\
\hline 4542 & \begin{tabular}{l}
NdeI (4574) \\
ACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAAT
\end{tabular} \\
\hline 4643 & GGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGT \\
\hline & \[
\begin{array}{lc} 
& \text { PacI (4760) } \\
\text { SdaI } & (\mathbf{4 7 5 2})
\end{array}
\] \\
\hline 4744 & TATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTC \\
\hline 4845 & CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCT \\
\hline 4946 & CGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATC \\
\hline 5047 & \begin{tabular}{l}
ApaLI (5084) \\
TCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCC
\end{tabular} \\
\hline 5148 & AACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTG \\
\hline 5249 & GCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAAC \\
\hline 5350 & AAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCT \\
\hline 5451 & \begin{tabular}{l}
PacI (5500) SwaI (5509) NotI (5519) \\
GACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTA
\end{tabular} \\
\hline \[
\begin{aligned}
& 5552 \\
& 5653
\end{aligned}
\] & CATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGC AAGTGCAGGTGCCAGAACATTTCTCTATCGAA \\
\hline
\end{tabular}```

