pFUSE-mlIgG2Ae1-Fc1
Plasmid containing a mouse engineered IgG2a Fc region
Catalog # pfc1-mg2ae1
For research use only
Version 20K05-MM

PRODUCT INFORMATION
Content:
- 20 µg of pFUSE-mlIgG2Ae1-Fc1 plasmid provided as lyophilized DNA
- 1 ml of Zeocin™ (100 mg/ml)

Storage and Stability:
- Product is shipped at room temperature.
- Lyophilized DNA should be stored at -20°C and is stable 3 months.
- Resuspended DNA should be stored at -20°C and is stable up to 1 year.
- Store Zeocin™ at 4 °C or at -20 °C. The expiry date is specified on the product label.

Quality control:
- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Plasmid DNA was purified by ion exchange chromatography and lyophilized.

GENERAL PRODUCT USE
pFUSE-Fc is a family of plasmid developed to facilitate the construction of Fc-fusion proteins by fusing the effector region of a protein to the Fc region of an immunoglobulin G (IgG).

pFUSE-Fc plasmids yield high levels of Fc-fusion proteins. The level of expression is usually in the µg/mL range. They can be transfected in a variety of mammalian cells, including myeloma cell lines, CHO cells, monkey COS cells and human embryonic kidney (HEK)293 cells, cells that are commonly used in protein purification systems.

pFUSE-Fc plasmids allow the secretion of Fc-Fusion proteins. As Fc-Fusion proteins are secreted, they can be easily detected in the supernatant of pFUSE-Fc-transfected cells by SDS-PAGE. Furthermore, functional domains can be identified by immunoblotting and ligand blotting.

Fc-Fusion proteins can be purified by single-step protein A or protein G affinity chromatography.

InvivoGen provides pFUSE-Fc vectors featuring Fc regions from different species and isotypes. Three murine isotypes are available: IgG1, IgG2a and IgG3. The Fc region mediates effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). IgG isoforms exert different levels of effector functions increasing in the order of mlG1<mlG3<mlG2a.

Under certain circumstances, for example when depletion of the target cell is undesirable, abrogating effector functions is required. On the contrary, in the case of antibodies intended for oncology use, increasing effector functions may improve their therapeutic activity.

Modifying effector functions can be achieved by engineering the Fc regions to either improve or reduce their binding to FcRs or the complement factors. Amino acids substitutions have been made in the mouse IgG2a Fc region in order to reduce its ADCC and CDC.

PLASMID FEATURES
- mlgG2ae1 Fc (mouse IgG2a engineered Fc): The Fc region comprises the CH2 and CH3 domains of the IgG heavy chain and the hinge region. The hinge serves as a flexible spacer between the two parts of the Fc-fusion protein, allowing each part of the molecule to function independently.

The Fc region of mouse IgG2a mediates high ADCC and CDC. To reduce its cytotoxicity, mlgG2a Fc was engineered by mutating the amino acids that are critical for FcγRs and C1q binding. The engineered form mlgG2ae1 contains the following mutations: L235E and E318A/K320A/K322A.

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1α (EF-1α) core promoter and the R segment and part of the U5 sequence (R-U5’) of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat. The EF-1α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo.

- MCS: The multiple cloning site contains several restriction sites that are compatible with many other enzymes, thus facilitating cloning.

- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.

- ori: a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.

- CMV enh / hFerL prom: This composite promoter combines the human cytomegalovirus immediate-early gene 1 enhancer and the core promoter of the human ferritin light chain gene. This ubiquitous promoter drives the expression of the Zeocin™-resistance gene in mammalian cells.

- EM2KC is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli. EM2KC is located within an intron and is spliced out in mammalian cells.

- Zeo: Resistance to Zeocin™ is conferred by the Sh ble gene from Streptococcus indictus. The same resistance gene confers selection in both mammalian cells and E. coli.

- βGlo pAn: The human beta-globin 3’UTR and polyadenylation sequence allows efficient arrest of the transgene transcription.

METHODS

Plasmid resuspension
Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at 1 μg/μl, resuspend the DNA in 20 μl of sterile H2O. Store resuspended plasmid at -20 °C.

Plasmid amplification and cloning
Plasmid amplification and cloning can be performed in E. coli GT116 or in other commonly used laboratory E. coli strains, such as DH5α.

Zeoctin™ usage
This antibiotic can be used for E. coli at 25 μg/ml in liquid or solid media and at 50-200 μg/ml to select Zeocin™-resistant mammalian cells.

RELATED PRODUCTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Catalog Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeocin™</td>
<td>ant-zn-1</td>
</tr>
</tbody>
</table>

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
InvivoGen Hong Kong: +852 3-622-34-80
E-mail: info@invivogen.com