pDRIVE5SEAP-hGFAP
A plasmid encoding the native tissue specific human GFAP promoter
Catalog # pdrive5s-hgfap

For research use only
Version # 17J31-MM

PRODUCT INFORMATION
Contents:
• 20 µg of pDRIVE5SEAP-hGFAP provided as lyophilized DNA
• 4 pouches of E. coli Fast-Media™ Zeo (2 TB and 2 Agar)
Storage and Stability:
• Product is shipped at room temperature.
• Lyophilized DNA should be stored at -20°C.
• Resuspended DNA should be stored at -20°C and is stable for 1 year.
• Store E. coli Fast-Media™ at room temperature in a dry and cool place.
Fast-Media™ pouches are stable for 2 years when stored properly.
Quality Control:
• Plasmid construct has been confirmed by restriction analysis and full-length ORF sequencing.
• Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE
pDRIVE5SEAP is an expression plasmid containing a native or composite promoter of interest. pDRIVE5SEAP may be used to:
- Subclone a promoter of interest into another vector. Unique restriction sites are present at each end of the promoter allowing convenient excision. The 5’ restriction sites are SdaI and SpeI. SdaI is compatible with NsiI and PstI. SpeI is compatible with Avr II, NheI and XbaI. The 3’ restriction site is BspHI which includes the ATG start codon and is compatible with NcoI and BspLU11I.
- Compare the activity of different promoters in transient transfection experiments. Each pDRIVE5SEAP promoter drives the expression of the SEAP reporter gene which allows for testing of the promoter’s activity in transient transfection experiments. The SEAP gene is flanked by restriction sites (BspHI and NheI) for easy replacement with a different gene of interest.

PROMOTER CHARACTERISTICS
Human Glial Fibrillary Acidic Protein promoter
Complete promoter size: 1673 bp
Specificity: Astrocytes

The glial fibrillary acidic protein (GFAP) is an intermediate filament protein found almost exclusively in astrocytes. It is expressed throughout postnatal life and is upregulated in response to almost any damage to the central nervous system, including Parkinson’s disease. The promoter of the GFAP gene was shown to direct astrocyte-specific transcription in vitro, in vivo, and in transgenic mice. Expression of a transgene under the control of the GFAP promoter is regulated in a similar fashion as the endogenous GFAP gene.

PLASMID FEATURES
• SEAP gene encodes an engineered secreted embryonic alkaline phosphatase. The levels of SEAP in the culture medium of transfected cells expressing the reporter gene can be assayed with chromogenic or luminescent methods
• SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA.
• pMBI Ori is a minimal E. coli origin of replication with the same activity as the longer Ori.
• EM2K is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli.
• Zeo gene confers Zeocin™ resistance therefore allowing the selection of transformed E. coli carrying a pDRIVE plasmid.
Note: Stable transfection of clones cannot be performed due to the absence of an eukaryotic promoter upstream of the Sh ble gene.

METHODS
Plasmid resuspension:
Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at 1 µg/µl, resuspend the DNA in 20 µl of sterile H₂O. Store resuspended plasmid at -20°C.

Plasmid amplification and cloning:
Plasmid amplification and cloning can be preformed in E. coli GT116 other commonly used laboratory E. coli strains, such as DH5α.

Selection of bacteria with E. coli Fast-Media Zeo:
E. coli Fast-Media® Zeo is a fast and convenient way to prepare liquid and solid media for bacterial culture by using only a microwave. E. coli Fast-Media® Zeo is a TB (liquid) or LB (solid) based medium with zeocin, and contains stabilizers. E. coli Fast-Media® Zeo can be ordered separately (catalog code fas-zn-l, fas-zn-s).
Method:
1- Pour the contents of a pouch into a clean borosilicate glass bottle or flask.
2- Add 200 ml of distilled water to the flask
3- Heat in a microwave on MEDIUM power setting (about 400 Watts), until bubbles start appearing (approximately 3 minutes). Do not overboil.
4- Swirl gently to mix the preparation. Be careful, the bottle and media are hot, use heatproof pads or gloves and care when handling.
5- Reheat the media for 30 seconds and gently swirl again. Repeat as necessary to completely dissolve the powder into solution. But be careful to avoid overboiling and volume loss.
6- Let agar medium cool to 45°C before pouring plates. Let liquid media cool to 37°C before seeding bacteria.

Note: Do not reheat solidified Fast-Media® as the antibiotic will be permanently destroyed by the procedure.

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
InvivoGen Hong Kong: +852 3622-3480
E-mail: info@invivogen.com

www.invivogen.com
5017 ACCCGTGCTGAGCGTGTTTTTTTTTTTTTTGCAAGCAGCAGTTACGCAGCAGAAGAAAAGGATCTCAAGAGACTCTTTGATCTTTT

5105 CTACGGGTCGCTGACGCTGACGTAAGGCATTTGHTGATGTAAGTTAAATTTATTTAATCA