# pCpGrich-mcs 

A CpG-containing control plasmid<br>Catalog \# pcpgr-mcs<br>For research use only<br>Version 21F04-MM

## PRODUCT INFORMATION

## Content:

- $20 \mu \mathrm{~g}$ of pCpGrich-mcs plasmid provided as lyophilized DNA
- E. coli GT115 strain provided lyophilized on a paper disk
-1 ml of Zeocin ${ }^{\mathrm{TM}}(100 \mathrm{mg} / \mathrm{ml})$


## Storage and Stability:

- Products are shipped at room temperature.
- Lyophilized DNA is stable 1 year when stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA is stable 6 months when stored at $-20^{\circ} \mathrm{C}$.
- Bacteria should be stored at $-20^{\circ} \mathrm{C}$ and are stable up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.


## Quality control:

Plasmid construct has been confirmed by restriction analysis and sequencing. Plasmid DNA was purified by ion exchange chromatography and lyophilized. Viability of the lyophilized bacteria upon resuspension has been verified.

## GENERAL PRODUCT USE

InvivoGen has developed a new family of plasmids that are completely devoid of CpG dinucleotides. These plasmids yield high levels of transgene expression both in vitro and in vivo, and in contrast to CMV-based plasmids allow sustained expression in vivo.
pCpGfree plasmids contain elements that naturally lack CpG dinucleotides, were modified to remove all CpGs , or entirely synthesized such as genes encoding selectable markers or reporters. pCpGfree plasmids represent valuable tools to study the effects of CpGs on gene expression in vivo and in vitro, using cell lines expressing TLR9, as well as their effects on the innate and acquired immune systems.
pCpGrich-mcs is a CpG-containing control plasmid. The CpG-free version of the murine CMV enhancer, human EF-1 $\alpha$ promoter, ori R6K gamma, bacterial EM2K promoter and Zeocin ${ }^{\text {Tw }}$ resistance gene have been replaced by their wild-type (wt) counterparts. The pCpGrich-mcs plasmid contains 88 CpG dinucleotides.

## PLASMID FEATURES

Elements for expression in $E$. coli

- R6K gamma ori (wt): This origin of replication is activated by the R6K specific initiator protein $\pi$, encoded by the pir gene ${ }^{1}$.
- EM7 is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in $E$. coli.
- Zeo (wt) selectable marker: Sh ble gene confers Zeocin ${ }^{\mathrm{TrN}}$ resistance.


## Elements for expression in mammalian cells

- Mammalian promoter combines the mouse CMV enhancer, the human elongation factor 1 alpha core promoter and 5'UTR containing a synthetic intron (SI 126).
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state $\mathrm{mRNA}^{2}$.
- MAR: Matrix attached regions (MARs) are sequences typically AT-rich that are able to form barriers between independently regulated domains ${ }^{3}$. This plasmid contains two MARs, from the 5 ' region of the human IFN- $\beta$ gene and the $\beta$-globin gene. The MARs are placed between the bacterial and mammalian transcription units.
- MCS: The multiple cloning site contains several commonly used restriction sites for convenient cloning of a gene of interest.
$5^{\prime}$ Bsr GI, Stu I, Bgl II, Acc65 I, Asp 718, Eco O109I, Bsp 120I, Nhe I 3'
Due to the presence of the R6Kyorigin of replication, pCpG plasmids can only be amplified in $E$. coli mutant strain expressing a pir mutant gene. They will not replicate in standard $E$. coli strains. T herefore, pCp plasmids are provided with the $E$. coli GT 115 strain, a pir mutant also deficient in Dcm methylation.

1. Wu F. et al. 1995.A DNA segment conferring stable maintenance on R6K gamma-origin core replicons. J Bacteriol. 177(22):6338-45. 2. Carswell S. \& Alwine JC., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol. Cell Biol. 10: 4248-4258. 3. Bode J. et al., 1996. Scaffold/matrix-attached regions: topological switches with multiple regulatory functions. Crit Rev Eukaryot Gene Expr. 6(2-3):115-38.

## METHODS

## Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu$ l, resuspend the DNA in $20 \mu$ l of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

## Reconstitution of $\boldsymbol{E}$. coli GT115 strain

Use sterile conditions to do the following:

1. Reconstitute E. coli GT115 by adding 1 ml of Luria-Bertani (LB) medium in the tube containing the paper disk. Let sit for 5 minutes.
2. Mix gently by vortexing for 1-2 minutes.
3. Streak bacteria taken from this suspension on a LB agar plate.
4. Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
5. Isolate a single colony and grow the bacteria in LB or terrific broth (TB) medium.
6. Prepare competent cells utilizing protocol of choice.

## Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT115.

## Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for $E$. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media.


PacI (-1)
1 TTAATTAAAATTATCTCTAAGGCATGTGAACTGGCTGTCTTGGTTTTCATCTGTACTTCATCTGCTACCTCTGTGACCTG

81 AAACATATTTATAATTCCATTAAGCTGTGCATATGATAGATTTATCATATGTATTTTCCTTAAAGGATTTTTGTAAGAAC

161 TAATTGAATTGATACCTGTAAAGTCTTTATCACACTACCCAATAAATAATAAATCTCTTTGTTCAGCTCTCTGTTTCTAT

241 AAATATGTACCAGTTTTATTGTTTTTAGTGGTAGTGATTTTATTCTCTTTCTATATATATACACACACATGTGTGCATTC
321 aTAAATATATACAATTTTTATGAATAAAAAATTATTAGCAATCAATATTGAAAACCACTGATTTTTGTTTATGTGAGCAA

## SdaI (420)

EcoRI (415)
401 ACAGCAGATTAAAAGGAATTCCTGCAGGAGATTGTACCTGCCCGTACATAAGGTCAATAGGGGGTGAATCAACAGGAAG

481 TCCCATTGGAGCCAAGTACACTGCGTCAATAGGGACTTTCCATTGGGTTTTGCCCGGTACATAAGGTCAATAGGGGATGA

561 GTCAATGGGAAAAACCCATTGGAGCCAAGTACACTGACTCAATAGGGACTTTCCATTGGGTTTTGCCCAGTACATAAGGT

641 CAATAGGGGGTGAGTCAACAGGAAAGTCCCATTGGAGCCAAGTACATTGAGTCAATAGGGACTTTCCAATGGGTTTTGCC
721 CAGTACATAAGGTCAATGGGAGGTAAGCCAATGGGTTTTTCCCATTACTGGCACGTATACTGAGTCATTAGGGACTTTCC

801 AATGGGTTTTGCCCAGTACATAAGGTCAATAGGGGTGAATCAACAGGAAAGTCCCATTGGAGCCAAGTACACTGAGTCAA
881 TAGGGACTTTCCATTGGGTTTTGCCCAGTACAAAAGGTCAATAGGGGGTGAGTCAATGGGTTTTTCCCATTATTGGCACG
SpeI (981)
961 TACATAAGGTCAATAGGGGTGACTAGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGT

## AgeI (1050)

1041 CGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTC
1121 CCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTTGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACA

HindIII (1206)
1201 CAGCTGAAGCTTCTGCCTTCTCCCTCCTGTGAGTTTGgtaagtcactgactgtctatgcctgggaaagggtgggcaggag
1281 atggggcagtgcaggaaaagtggcactatgaacccTGCAGCCCTAGAcaattgtactaaccttcttctctttcctctcct


1361 gacagGTTGGTGTACAGTAGCTTCCAAGGCCTAAGATCTAGGTACCAAGGGCCCATGGCTAGCTGGCCAGACATGATAAG
1441 ATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTG

1521 CTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGG

## EcoRI (1651)

1601 GAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCAGTCAATATGTTCACCCCAAAAA

1681 AGCTGTTTGTTAACTTGCCAACCTCATTCTAAAATGTATATAGAAGCCCAAAAGACAATAACAAAAATATTCTTGTAGAA
1761 CAAAATGGGAAAGAATGTTCCACTAAATATCAAGATTTAGAGCAAAGCATGAGATGTGTGGGGATAGACAGTGAGGCTGA

## SacI (1852)

1841 TAAAATAGAGTAGAGCTCAGAAACAGACCCATTGATATATGTAAGTGACCTATGAAAAAAATATGGCATTTTACAATGGG
1921 AAAATGATGGTCTTTTTCTTTTTTAGAAAAACAGGGAAATATATTTATATGTAAAAAATAAAAGGGAACCCATATGTCAT

## SphI (2084)

2081 AGAAGCATGCCATCAA GACTTCAGTGTAGAGAAAAATTTCTTATGACTCAAAGTCCTAACCACAAAGAAAAGATTGTTAA

2161 TTAGATTGCATGAATATTAAGACTTATTTTTAAAATTAAAAAACCATTAAGAAAAGTCAGGCCATAGAATGACAGAAAAT
2241 ATTTGCAACACCCCAGTAAAGAGAATTGTAATATGCAGATTATAAAAAGAAGTCTTACAAATCAGTAAAAAATAAAACTA

2321 GACAAAAATTTGAACAGATGAAAGAGAAACTCTAAATAATCATTACACATGAGAAACTCAATCTCAGAAATCAGAGAACT

PacI (2457)
2401 ATCATTGCATATACACTAAATTAGAGAAATATTAAAAGGCTAAGTAACATCTGTGGCTTAATTAAAATCTCGTAGCACGT


2481 GTCAGTCCTGCTCCTCGGCCACGAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCCGCCCCCACGGCTGC

2561 TCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTC 981E G I E T M A P G S A D R F $N$ T T S V V E S W E A Y L E
2641 GTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCA
 SmaI (2762)
2721 CGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACC
 NcoI (2852)
2801 GCTCCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCAACTTGGCCATGGTTTAGTTCCTCACCTTGTCGTA 181A G A V D R A T L V P V A AseI (2909) PacI (2927)
2881 TTATACTATGCCGATATACTATGCCGATGATTAATTGTCAACACGTGTTAATTAAGATCAGCAGTTCAACCTGTTGATAG

## SnaBI (2960)

2961 TACGTACTAAGCTCTCATGTTTCACGTACTAAGCTCTCATGTTTAACGTACTAAGCTCTCATGTTTAACGAACTAAACCC
3041 TCATGGCTAACGTACTAAGCTCTCATGGCTAACGTACTAAGCTCTCATGTTTCACGTACTAAGCTCTCATGTTTGAACAA AseI (3124)
3121 TAAAATTAATATAAATCAGCAACTTAAATAGCCTCTAAGGTTTTAAGTTTTATAAGAAAAAAAAGAATATATAAGGCTTT

## HindIII (3202)

3201 TAAAGCTTTTAAGGTTTAACGGTTGTGGACAACAAGCCAGGGATGTAACGCACTGAGAAGCCCTTAGAGCCTCTCAAAGC

3281 AATTTTGAGTGACACAGGAACACTTAACGGCTGACAG

