STOP

Before opening this package, please read the Limited Use License statement below:

Important Limited Use License information for pCpGfree-OVA

The purchase of the pCpGfree-OVA vector conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes.

The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes.

Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic, or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research.

If the purchaser is unwilling to accept the limitations of this limited use statement, InvivoGen is willing to accept return of the product with a full refund. The product must be returned in resaleable condition. For information on purchasing a license to this product for purposes other than research, contact InvivoGen, 10515 Vista Sorrento Parkway San Diego, CA 92121 USA. Tel: 858-457-5873 Fax: 858-457-5843.

pCpGfree-OVA

An OVA-expressing DNA immunization plasmid completely devoid of CpG dinucleotides

Catalog \# pcpgf-ova
For research use only
Version \# 21F04-MMv02

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pCpGfree-OVA plasmid provided as lyophilized DNA
- E. coli GT115 strain provided lyophilized on a paper disk
-1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$
Storage and Stability:
- Products are shipped at room temperature.
- Lyophilized DNA is stable when stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA is stable for 12 months when stored at $-20^{\circ} \mathrm{C}$.
- Bacteria should be stored at $-20^{\circ} \mathrm{C}$ and are stable for at least 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

Plasmid construct has been confirmed by restriction analysis and sequencing. Plasmid DNA was purified by ion exchange chromatography and lyophilized. Viability of the lyophilized bacteria upon resuspension has been verified.

GENERAL PRODUCT USE

InvivoGen has developed a family of plasmids that are completely devoid of CpG dinucleotides. These plasmids yield high levels of transgene expression both in vitro and in vivo, and in contrast to CMV-based plasmids allow sustained expression in vivo.
pCpGfree plasmids contain elements that naturally lack CpG dinucleotides, were modified to remove all CpGs , or entirely synthesized such as genes encoding selectable markers or reporters.
pCpGfree-OVA expresses a CpG-free allele of the ovalbumin (OVA) gene. This plasmid is designed for DNA immunization experiments in animal models. This plasmid possesses dual functions; it can be used as a DNA vaccine carrier for antigen presentation, and as an immunestimulative adjuvant ${ }^{1}$.

PLASMID FEATURES

All the elements required for replication and selection of the plasmid in E. coli and gene expression in mammalian cells are completely devoid of CpG dinucleotides. Furthermore, all Dam methylation sites (GATC) have been removed to prevent prokaryotic methylation.

Elements for expression in E. coli

- Origin of replication: The E. coli R6K gamma ori has been modified to remove all CpGs. This origin is activated by the R6K specific initiator protein π, encoded by the pir gene ${ }^{2}$.
- Bacterial promoter: EM2K is a CpG-free version of the bacterial EM7 promoter.
- Selectable marker: The Zeocin ${ }^{\text {rTM }}$ resistance gene is a small gene ($<400 \mathrm{bp}$) that contains numerous CpG dinucleotides. A synthetic new allele was created that contains no CpGs.
Elements for expression in mammalian cells
- Mammalian promoter: The CpG-free promoter combines the mouse CMV enhancer, the human elongation factor 1 alpha core promoter and 5 'UTR containing a synthetic intron.
- Polyadenylation signal: The polyadenylation signal is a CpG-free form of the late SV40 polyadenylation signal.
- MAR: Matrix attached regions (MARs) are sequences typically AT-rich that are able to form barriers between independently regulated domains ${ }^{3}$. pCpG plasmids contains two MARs, from the 5 ' region of the human IFN- β gene or β-globin gene that were chosen because they are naturally CpG-free. The MARs are placed between the bacterial and mammalian transcription units.
- pCpG-OVA expresses a synthetic OVA gene, a CpG-free allele of the ovalbumin (OVA) gene constructed by chemical synthesis.
Due to the presence of the R6K γ origin of replication, pCpG plasmids can only be amplified in E. coli mutant strain expressing a pir mutant gene. They will not replicate in standard E. coli strains. Therefore, pCpG plasmids are provided with the E. coli GT115 strain, a pir mutant also deficient in Dcm methylation.

1. Miura N. et al., 2015. A KALA-modified lipid nanoparticle containing CpG-free plasmid DNA as a potential DNA vaccine carrier for antigen presentation and as an immunestimulative adjuvant. Nucleic Acids Res. 43(3):1317-31. 2. Wu F. et al. 1995. A DNA segment conferring stable maintenance on R6K gamma-origin core replicons. J Bacteriol. 177(22):6338-45. 3. Bode J. et al., 1996. Scaffold/matrix-attached regions: topological switches with multiple regulatory functions. Crit Rev Eukaryot Gene Expr. 6(2-3):115-38.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Reconstitution of \boldsymbol{E}. coli GT115 strain

Use sterile conditions to do the following:

1. Reconstitute E. coli GT115 by adding 1 ml of Luria-Bertani (LB) medium in the tube containing the paper disk. Let sit for 5 minutes.
2. Mix gently by vortexing for 1-2 minutes.
3. Streak bacteria taken from this suspension on a LB agar plate.
4. Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
5. Isolate a single colony and grow the bacteria in LB or terrific broth (TB) medium.
6. Prepare competent cells utilizing protocol of choice.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT115.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media.

RELATED PRODUCTS

Product	Description	Catalog Code
ChemiComp GT115	Chemically competent E. coli	gt115-11
pCpGfree-mcs	CpG-free cloning vector	pcpgf-mcs
Zeocin"'	Selective antibiotic for the Sh ble gene	ant-zn-1
OVA Peptides Ova	For detection; ELISPOT	vac-sin
$257-264$	For detection; ELISPOT	vac-isq

InvivoGen Hong Kong: +852 3-622-34-80
E-mail: info@invivogen.com

$\stackrel{125}{\stackrel{1}{1}}$

PacI (-1)
1 TTAATTAAAATTATCTCTAAGGCATGTGAACTGGCTGTCTTGGTTTTCATCTGTACTTCATCTGCTACCTCTGTGACCTGAAACATATTTATAATTCCAT
101 TAAGCTGTGCATATGATAGATTTATCATATGTATTTTCCTTAAAGGATTTTGTAAGAACTAATTGAATTGATACCTGTAAAGTCTTTATCACACTACCC
201 AATAAATAATAAATCTCTTTGTTCAGCTCTCTGTTTCTATAAATATGTACCAGTTTTATTGTTTTTAGTGGTAGTGATTTTATTCTCTTTCTATATATAT

301 ACACACACATGTGTGCATTCATAAATATATACAATTTTTATGAATAAAAAATTATTAGCAATCAATATTGAAAACCACTGATTTTGTTTATGTGAGCAA

SdaI (420)

EcoRI (415)
401 ACAGCAGATTAAAAGGAATTCCTGCAGGAGTCAATGGGAAAAACCCATTGGAGCCAAGTACACTGACTCAATAGGGACTTTCCATTGGGTTTTGCCCAGT
501 ACATAAGGTCAATAGGGGGTGAGTCAACAGGAAAGTCCCATTGGAGCCAAGTACATTGAGTCAATAGGGACTTTCCAATGGGTTTTGCCCAGTACATAAG

601 GTCAATGGGAGGTAAGCCAATGGGTTTTCCCATTACTGACAIGTATACTGAGTCATTAGGGACTTTCCAATGGGTTTGGCCCAGTACATAAGGTCAATA
701 GGGGTGAATCAACAGGAAAGTCCCATTGGAGCCAAGTACACTGAGTCAATAGGGACTTTCCATTGGGTTTTGCCCAGTACAAAAGGTCAATAGGGGGTGA

SpeI (850)

801 GTCAATGGGT1TTCCCATTATTGGCACATACATAAGGTCAATAGGGGTGACTAGTGGAGAAGAGCATGCTTGAGGGCTGAGTGCCCCTCAGTGGGCAGA
901 GAGCACATGGCCCACAGTCCCTGAGAAGTTGGGGGGAGGGGTGGGCAATTGAACTGGTGCCTAGAGAAGGTGGGGCTIGGGTAAACTGGGAAAGTGATGT
HindIII (1074)
1001 GGTGTACTGGCTCCACCTTTTTCCCCAGGGTGGGGGAGAACCATATATAAGTGCAGTAGTCTCTGTGAACATTCAAGCTTCTGCCTTCTCCCTCCTGTGA
1101 GTTTGgtaagtcactgactgtctatgcctgggaaagggtgggcaggaggtggggcagtgcaggaaaagtggcactgtgaaccctgcagccctagacaatt

NcoI (1254)

1201 gtactaaccttcttctctttcctctcctgacagGTTGGTGTACAGTAGCTTCCACCATGGGCTCAATTGGTGCAGCATCAATGGAGTTCTGCTTTGATGT 1. M G S I G A A S M E F C F D V 1301 TTTCAAGGAGCTGAAAGTGCACCATGCAAATGAGAATATTTTTTACTGCCCAATAGCAATAATGTCAGCCCTTGCTATGGTGTATCTGGGGGCCAAGGAC 15. F K E L K V H H A N E N I F Y C P I A I M S A L A M V Y L G A K D 1401 TCCACCAGAACCCAAATCAACAAGGTTGTAAGGTTTGACAAGCTGCCAGGCTTTGGTGACTCAATAGAGGCCCAGTGTGGCACCAGTGTAAATGTACACT 49: S T R T Q I N K V V R F D K L P G F G D S I E A Q C G T S V N V H Acc65I (1587)
1501 CCTCCCTAAGGGATATACTGAACCAGATAACCAAGCCCAATGATGTGTACAGCTTCTCCTTGGCAAGCAGACTATATGCAGAGGAGAGGTACCCAATCTT 82' S S L R D I L N Q I T K P N D V Y S F S L A S R L Y A E E R Y P I L 1601 GCCTGAATACCTGCAGTGTGTCAAGGAACTTTACAGAGGGGGCCTAGAGCCCATCAACTTTCAGACTGCAGCTGACCAAGCAAGGGAGTTAATCAACTCT 115' P E Y L Q C V K E L Y R G G L E P I N F Q T A A D Q A R E L I N S 1701 TGGGTGGAGAGCCAGACCAATGGAATAATCAGGAATGTTCTGCAGCCTTCATCTGTAGACTCCCAGACAGCAATGGTCTTGGTCAATGCAATTGTCTTCA 149. W V E S Q T N G I I R N V L Q P S S V D S Q T A M V L V N A I V F 1801 AGGGCCTGTGGGAGAAGACTTTCAAAGATGAAGACACTCAGGCAATGCCCTTCAGAGTAACTGAACAGGAGTCCAAACCTGTGCAGATGATGTACCAAAT 182'K G L W E K T F K D E D T Q A M P F R V T E Q E S K P V Q M M Y Q I 1901 TGGGTTATTCAGGGTGGCTTCAATGGCTTCTGAGAAAATGAAGATTCTGGAGTTACCCTTTGCCAGTGGGACAATGTCTATGCTGGTCCTGTTACCAGAT 215 G L F R V A S M A S E K M K I L E L P F A S G T M S M L V L L P D 2001 GAGGTGTCAGGGCTTGAGCAGCTGGAGTCAATCATCAATTTTGAGAAGTTAACAGAGTGGACCTCCTCCAATGTCATGGAAGAAAGGAAAATCAAGGTCT 249. E V S G L E Q L E S I I N F E K L T E W T S S N V M E E R K I K V 2101 ACCTGCCCAGAATGAAAATGGAGGAGAAATACAACCTCACCTCAGTGTTGATGGCAATGGGGATAACAGATGTCTTCTCCAGCTCTGCCAACCTCTCTGG 282 Y L P R M K M E E K Y N L T S V L M A M G I T D V F S S S A N L S G EcoRV (2224)
2201 CATCAGCAGTGCTGAATCCCTAAAGATATCACAGGCTGTTCATGCAGCCCATGCAGAAATCAATGAAGCAGGCAGGGAGGTGGTGGGCTCTGCTGAGGCA 315. I S S A E S L K I S Q A V H A A H A E I N E A G R E V V G S A E A 2301 GGAGTGGATGCTGCCTCTGTCTCAGAAGAGTTCAGAGCAGACCACCCCTTCCTCTTCTGCATCAAGCATATAGCCACCAATGCTGTTCTTTTCTTTGGAA 349. G V D A A S V S E E F R A D H P F L F C I K H I A T N A V L F F G NheI (2418)
2401 GGTGTGTGTCCCCCTAAAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTT 382 R C V S P •
2501 GTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGG
EcoRI (2652)
2601 GGAGGTGTGGGAGGTTT1TTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCAGTCAATATGTTCACCCCAAAAAAGCTGTTTGTTAACTTGCC
2701 AACCTCATTCTAAAATGTATATAGAAGCCCAAAAGACAATAACAAAAATATTCTTGTAGAACAAAATGGGAAAGAATGTTCCACTAAATATCAAGATTTA

SacI (2853)

2801 GAGCAAAGCATGAGATGTGTGGGGATAGACAGTGAGGCTGATAAAATAGAGTAGAGCTCAGAAACAGACCCATTGATATATGTAAGTGACCTATGAAAAA

2901 AATATGGCATTTACAATGGGAAAATGATGGTCTTTTCTTTTTTAGAAAAACAGGGAAATATATTTATATGTAAAAAATAAAAGGGAACCCATATGTCA

3001 TACCATACACACAAAAAAATTCCAGTGAATTATAAGTCTAAATGGAGAAGGCAAAACTTTAAATCTTTTAGAAAATAATATAGAAGCATGCCATCAAGAC
3101 TTCAGTGTAGAGAAAAATTTCTTATGACTCAAAGTCCTAACCACAAAGAAAAGATTGTTAATTAGATTGCATGAATATTAAGACTTATTITTAAAATTAA
3201 AAAACCATTAAGAAAAGTCAGGCCATAGAATGACAGAAAATATTTGCAACACCCCAGTAAAGAGAATTGTAATATGCAGATTATAAAAAGAAGTCTTACA

3301 AATCAGTAAAAAATAAAACTAGACAAAAATTTGAACAGATGAAAGAGAAACTCTAAATAATCATTACACATGAGAAACTCAATCTCAGAAATCAGAGAAC

PacI (3458)
3401 TATCATTGCATATACACTAAATTAGAGAAATATTAAAAGGCTAAGTAACATCTGTGGCTTAATTAAAATCAGCAGTTCAACCTGTTGATAGTATGTACTA
AGCTCTCATGTITAATGTACTAAGCTCTCATGTTTAATGAACTAAACCCTCATGGCTAATGTACTAAGCTCTCATGGCTAATGTACTAAGCTCTCATGTT

AseI (3633)

3601 TCATGTACTAAGCTCTCATGTTTGAACAATAAAATTAATATAAATCAGCAACTTAAATAGCCTCTAAGGTITTAAGTITTATAAGAAAAAAAAGAATATA

3701 TAAGGCTITTAAAGGTITTAAGGTTTCCTAGCTTTAGTCCTGTTCCTCAGCTACAAAATGGACACAATTTCCAGCAGGGTCTCTGAGGGCAAATTCCCTT
 3801 CCCCAAGGTTGTTCACCAATTTCTGTCATGGCTGGGCCAGAGGCATCCCTGAAATTTGTGCTGACTACTTCTGACCATTCTGCATAAAGCTCATCTAGGC
 3901 CTCTGACCCAGACCCAAGCAAGGGTGTTGTCAGGGACAACTTGGTCCTGAACTGCTGAGATGAAGAGGGTGACATCATCTCTGACAACACCAGCAAAATC
 4001 ATCTTCAACAAAGTCTCTGGAGAATCCTAATCTGTCAGTCCAGAACTCTACAGCCCCTGCAACATCCCTTGCTGTGAGGACTGGGACTGCAGAAGTGAGT
 SfiI (4102)
4101 TTGGCCATGATGGCCCTCCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGTTTAATTGTCAACTACCTGTT
21 K A M

