STOP

Before using this product, please read the Limited Use License statement below:

Important Limited Use License information for pCpGfree-basic

The purchase of the pCpGfree -basic vector conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes.

The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes.

Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic, or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research.

If the purchaser is unwilling to accept the limitations of this limited use statement, InvivoGen is willing to accept return of the product with a full refund. The product must be returned in resaleable condition. For information on purchasing a license to this product for purposes other than research, contact InvivoGen, 10515 Vista Sorrento Parkway San Diego, CA 92121 USA. Tel: 858-457-5873 Fax: 858-457-5843.

InvivoGen USA (International): +1 (858) 457-5873

pCpGfree-basic

A mSEAP reporter plasmid without a promoter and devoid of CpG dinucleotides
Catalog \# pcpgf-bas
For research use only
Version 21F04-MMv02

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pCpGfree-basic plasmid provided as lyophilized DNA
- E. coli GT115 strain provided lyophilized on a paper disk
-1 ml of Zeocin ${ }^{\mathrm{TM}}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

- Products are shipped at room temperature.
- Lyophilized DNA is stable 1 year when stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA is stable 6 months when stored at $-20^{\circ} \mathrm{C}$.
- Bacteria should be stored at $-20^{\circ} \mathrm{C}$ and are stable up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

Plasmid construct has been confirmed by restriction analysis and sequencing. Plasmid DNA was purified by ion exchange chromatography and lyophilized. Viability of the lyophilized bacteria upon resuspension has been verified.

GENERAL PRODUCT USE

Methylation of CpG dinucleotides within the promoter/enhancer region of genes is often associated with transcriptional silencing. This epigenetic event plays an important role in the regulation of gene activity in normal and cancer cells. Recently, it has been confirmed that the activity of enhancers is correlated with DNA methylation ${ }^{1}$.
InvivoGen provides pCpGfree-basic a murine secreted embryonic alkaline phosphatase (mSEAP) reporter plasmid that is completely devoid of CpG dinucleotides and lacks the entire promoter region. It contains a multiple cloning site upstream of the mSEAP reporter gene. Expression of mSEAP in cells transfected with this plasmid depends on the insertion of a functional promoter or enhancer/promoter cassette upstream from the mSEAP gene. Thus, pCpGfree-basic allows to study the effect of CpG methylation on a promoter, alone or combined with enhancer elements.

PLASMID FEATURES

All the elements required for replication and selection of the plasmid in E. coli and gene expression in mammalian cells are completely devoid of CpG dinucleotides. Furthermore, all Dam methylation sites (GATC) have been removed to prevent prokaryotic methylation.

Elements for expression in E. coli

- Origin of replication: The E. coli R6K gamma ori has been modified to remove all CpGs. This origin is activated by the R6K specific initiator protein π, encoded by the pir gene ${ }^{2}$.
- Bacterial promoter: EM2K is a CpG-free version of the bacterial EM7 promoter.
- Selectable marker: The Zeocin ${ }^{\text {Tr }}$ resistance gene is a small gene ($<400 \mathrm{bp}$) that contains numerous CpG dinucleotides. A synthetic new allele was created that contains no CpGs.
Elements for expression in mammalian cells
- The synthetic $m S E A P \triangle C p G$ gene: a $C p G$-free allele of the murine SEAP gene constructed by chemical synthesis.
- Polyadenylation signal: The polyadenylation signal is a CpG-free form of the late SV40 polyadenylation signal.
- MAR: Matrix attached regions (MARs) are sequences typically AT-rich that are able to form barriers between independently regulated domains ${ }^{3}$. pCpGfree plasmids contains two MARs, from the 5' region of the human IFN- β gene or β-globin gene that were chosen because they are naturally CpG-free. The MARs are placed between the bacterial and mammalian transcription units.
- MCS: The multiple cloning site contains several commonly used restriction sites for convenient cloning of a gene of interest.
5’ Sda I, Bsp 120I, Avr II, Nsi I, Ppu 10I, Sca I, Bam HI, Spe I, Hind III 3'
Due to the presence of the R6K γ origin of replication, pCpG plasmids can only be amplified in E. coli mutant strain expressing a pir mutant gene. They will not replicate in standard E. coli strains. Therefore, pCpG plasmids are provided with the E. coli GT115 strain, a pir mutant also deficient in Dcm methylation.

1. Hoivik EA. et al., 2011. DNA Methylation of Intronic Enhancers Directs TissueSpecific Expression of Steroidogenic Factor 1/Adrenal 4 Binding Protein (SF-1/Ad4BP). Endocrinology. 152(5):2100-12. 22. 2. Wu F. et al. 1995. A DNA segment conferring stable maintenance on R6K gamma-origin core replicons. J Bacteriol. 177(22):6338-45. 3. Bode J. et al., 1996. Scaffold/matrix-attached regions: topological switches with multiple regulatory functions. Crit Rev Eukaryot Gene Expr. 6(2-3):115-38.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in 20μ l of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Reconstitution of E. coli GT115 strain

Use sterile conditions to do the following:

1. Reconstitute E. coli GT115 by adding 1 ml of Luria-Bertani (LB) medium in the tube containing the paper disk. Let sit for 5 minutes. 2. Mix gently by vortexing for 1-2 minutes.
2. Streak bacteria taken from this suspension on a LB agar plate.
3. Place the plate in an incubator at $37^{\circ} \mathrm{C}$ overnight.
4. Isolate a single colony and grow the bacteria in LB or terrific broth (TB) medium.
5. Prepare competent cells utilizing protocol of choice.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT115.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media.

PacI (-1)
1 TTAATTAAAATTATCTCTAAGGCATGTGAACTGGCTGTCTTGGTTTTCATCTGTACTTCATCTGCTACCTCTGTGACCTGAAACATATTTATAATTCCAT
101 TAAGCTGTGCATATGATAGATTTATCATATGTATTTCCTTAAAGGATTTTGTAAGAACTAATTGAATTGATACCTGTAAAGTCTTTATCACACTACCC

201 AATAAATAATAAATCTCTTTGTTCAGCTCTCTGTTTCTATAAATATGTACCAGTTTTATTGTTTTTAGTGGTAGTGATTTTATTCTCTTTCTATATATAT

301 ACACACACATGTGTGCATTCATAAATATATACAATTTTTATGAATAAAAAATTATTAGCAATCAATATTGAAAACCACTGATTTTTGTTTATGTGAGCAA
\square

Bsp120I (426) Ppu10I (439)
SdaI (420) NsiI (439) BamHI (452)
EcoRI (415) AvrII (433) ScaI (445) SpeI (466) HindIII (480)
401 ACAGCAGATTAAAAGGAATTCCTGCAGGGCCCACCTAGGATGCATAGTACTAGGATCCAACATGTAACTAGTAGCATGCAAAGCTTAGAAttgtactaac

BsrGI (530)

501 cttcttctctttcctctcctgacagGTTGGTGTACAGTAGCTTCCACCATGTGGGGTGCCTGTCTGCTATTGCTGGGCTTAAGTCTTCAAGTTTGCCCCA
1* Me tT rpG lyA laCysLeuLeuLeuLeuG lyLeuSe rLeuG InVa ICysP roS
601 GTGTCATTCCTGTGGAGGAGGAGAATCCTGCTTTTTGGAATAGGAAGGCAGCTGAAGCCTTGGATGCAGCCAAGAAGCTCAAGCCCATTCAGACATCTGC
18* e V a I I leP roVa IG luG luG luAsnP roA laPheT rpAsnArgLysA laA laG luA laLeuAspA laA laLysLysLeuLysP ro I leG InTh rSe rA I
701 AAAGAATCTTGTCATCCTCATGGGTGATGGAATGGGTGTCTCCACTGTAACAGCCACCAGGATTCTGAAGGGCCAGCAACAAGGTCATCTAGGCCCAGAG
51* aLysAsnLeuVa I I leLeuMe tG lyAspG lyMe tG lyVa ISerTh rVa Th rA laTh rArg I leLeuLysG lyG InG InG InG lyH isLeuG lyP roG lu
801 ACCCAGTTGGCAATGGACAGGTTCCCTCACATGGCCCTTTCCAAGACTTACAACACTGACAAGCAGATTCCTGACTCTGCTGGGACAGGCACAGCATTCT
85* Th rG InLeuA laMe tAspA rgPheP roH isMe tA laLeuSe rLysTh rTy rAsnTh rAspLysG In I leP roAspSe rA laG lyTh rG lyTh rA laPheL
901 TGTGTGGAGTAAAAACCAACATGAAAGTCATTGGTCTTTCAGCTGCTGCCAGATTCAACCAGTGCAACACCACATGGGGCAATGAAGTGGTCTCTGTAAT
118 euCysG lyVa ILysTh rAsnMe tLysVa I I leG lyLeuSe rA laA laA laA rgPheAsnG InCysAsnTh rTh rT rpG lyAsnG luVa Na ISe rVa Me
1001 GCACAGGGCCAAAAAAGCTGGGAAAAGTGTGGGTGTGGTGACAACCACCTCTGTCCAGCATGCCTCTCCTGCTGGAACTTATGCCCACACAGTGAACAGA
151 th isArgA laLysLysA laG lyLysSe rVa IG lyVa Na Th rTh rTh rSe rVa IG InH isA laSe rP roA laG lyTh rTy rA laH isTh rVa AsnArg
1101 GGTTGGTACTCTGATGCTCAGATGCCTGCCTCAGCTTTACAAGATGGCTGCAAGGACATCAGCACCCAGCTCATCTCAAACATGGACATAGATGTCATCT
185* G lyT rpTy rSe rAspA laG InMe tP roA laSe rA laLeuG InAspG lyCysLysAsp I leSe rTh rG InLeu I leSe rAsnMe tAsp I leAspVa I I leL
1201 TAGGGGGTGGGAGAAAGTTCATGTTCCCAAAGGGGACTCCTGACCAGGAGTACCCCACAGACACAAAGCAGGCTGGCACAAGATTAGATGGTAGGAACCT
218* euG lyG lyG lyA rgLysPheMe tPheP roLysG lyTh rP roAspG InG luTy rP roTh rAspTh rLysG InA laG lyTh rA rgLeuAspG lyArgAsnLe
1301 TGTGCAAGAGTGGCTTGCCAAGCATCAGGGAGCAAGGTATGTCTGGAACAGGAGTGAGCTAATCCAGGCCTCTTTGAACAGGTCTGTCACTCACCTAATG
251* uVa IG InG luT rpLeuA laLysH isG InG lyA laA rgTy rVa TrpAsnArgSe rG luLeu I leG InA laSe rLeuAsnArgSe ra Th rH isLeuMet
1401 GGGTTATTTGAGCCCAATGACATGAAGTATGAGATACACAGGGACCCTGCCCAGGACCCCTCCTTAGCAGAAATGACTGAAGTTGCTGTGAGGATGTTGT 285* G lyLeuPheG luP roAsnAspMe tLysTy rG lu I leH isA rgAspP roA laG InAspP roSe rLeuA laG luMe tTh rG luVa IA laVa W agMe tLeuS 1501 CCAGAAATCCAAAAGGGTTCTACCTCTTTGTTGAGGGGGGAAGGATTGATCATGGTCACCATGAGACAGTTGCTTACAGAGCCTTAACTGAGGCTGTGAT 318 e rArgAsnP roLysG lyPheTy rLeuPheVa IG luG lyG lyArg I leAspH isG lyH isH isG luTh rVa A laTy rArgA laLeuTh rG luA laVa Me

PshAI (1670)
1601 GTTTGATTCTGCTGTGGACAAGGCTGACAAACTGACCTCTGAGCAGGACACAATGATTCTAGTGACTGCTGACCACAGTCATGTTTTCTCCTTTGGGGGC
351 tPheAspSe rA laVa AspLysA laAspLysLeuTh rSe rG luG InAspTh me t I leLeuVa Th rA laAspH isSe rH isVa IPheSe rPheG lyG ly 1701 TACACCCAGAGGGGTGCTTCAATCTTTGGCCTGGCCCCTTTCAAGGCAGAAGATGGGAAGAGTTTCACCTCCATCCTCTATGGGAATGGTCCTGGGTACA
385* Ty rTh rG InA rgG lyA laSe r I lePheG lyLeuA laP roPheLysA laG luAspG lyLysSe rPheTh rSer I leLeuTy rG lyAsnG lyP roG lyTy rL SacI (1840)
1801 AGCTGCACAATGGGGCCAGAGCTGATGTGACAGAAGAGGAGAGCTCCAACCCAACCTACCAGCAGCAAGCAGCAGTCCCTCTTTCTTCAGAAACCCACTC 418. ysLeuH isAsnG lyA laArgA laAspVa Th rG luG luG luSe rSe rAsnP roTh rTy rG InG InG InA laA laVa IP roLeuSe rSe rG luTh rH isSe

1901 TGGGGAAGATGTGGCCATATTTGCCAGAGGCCCCCAAGCCCACTTGGTGCATGGAGTTCAGGAGCAGAATTACATAGCTCATGTAATGGCTTTTGCTGCT
451* rG lyG luAspVa A la I lePheA laArgG lyP roG InA laH isLeuVa ${ }^{*} H$ isG lyVa IG InG luG InAsnTyr I leA laH isVa Me tA laPheA laA la NheI (2073)
2001 TGCTTGGAGCCCTACACAGACTGTGGCCTAGCCAGCCCAGCAGGCCAGTCCTCTGCAGTAAGCCCAGGCTAGAGCTAGCTGGCCAGACATGATAAGATAC
485* CysLeuG luP roTy rTh rAspCysG lyLeuA laSe rP roA laG lyG InSe rSe rA laVa ISe rP roG lye••
2101 ATTGATGAGTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCT
2201 GCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTITTTTAAAGCAAGTAAAACCTCTACAAATG EcoRI (2307)
2301 TGGTATGGAATTCAGTCAATATGTTCACCCCAAAAAAGCTGTTTGTTAACTTGCCAACCTCATTCTAAAATGTATATAGAAGCCCAAAAGACAATAACAA

2401 AAATATTCTTGTAGAACAAAATGGGAAAGAATGTTCCACTAAATATCAAGATTTAGAGCAAAGCATGAGATGTGTGGGGATAGACAGTGAGGCTGATAAA

SacI (2508)
2501 ATAGAGTAGAGCTCAGAAACAGACCCATTGATATATGTAAGTGACCTATGAAAAAAATATGGCATTTTACAATGGGAAAATGATGGTCTTTTTCTTTTT

2601 AGAAAAACAGGGAAATATATTTATATGTAAAAAATAAAAGGGAACCCATATGTCATACCATACACACAAAAAAATTCCAGTGAATTATAAGTCTAAATGG

2701 AGAAGGCAAAACTTTAAATCTTTTAGAAAATAATATAGAAGCATGCCATCAAGACTTCAGTGTAGAGAAAAATTTCTTATGACTCAAAGTCCTAACCACA
2801 AAGAAAAGATTGTTAATTAGATTGCATGAATATTAAGACTTATTITTAAAATTAAAAAACCATTAAGAAAAGTCAGGCCATAGAATGACAGAAAATATIT
2901 GCAACACCCCAGTAAAGAGAATTGTAATATGCAGATTATAAAAAGAAGTCTTACAAATCAGTAAAAAATAAAACTAGACAAAAATTTGAACAGATGAAAG

3001 AGAAACTCTAAATAATCATTACACATGAGAAACTCAATCTCAGAAATCAGAGAACTATCATTGCATATACACTAAATTAGAGAAATATTAAAAGGCTAAG

PacI (3113)
3101 TAACATCTGTGGCTTAATTAAAATCAGCAGTTCAACCTGTTGATAGTATGTACTAAGCTCTCATGTTTAATGTACTAAGCTCTCATGTITAATGAACTAA \longrightarrow

AseI (3288)

3201 ACCCTCATGGCTAATGTACTAAGCTCTCATGGCTAATGTACTAAGCTCTCATGTTTCATGTACTAAGCTCTCATGTTTGAACAATAAAATTAATATAAAT

3301 CAGCAACTTAAATAGCCTCTAAGGTITTAAGTTTTATAAGAAAAAAAAGAATATATAAGGCTTTTAAAGGTITTAAGGTTTCCTAGCTTTAGTCCTGTTC

3401 CTCAGCTACAAAATGGACACAATTTCCAGCAGGGTCTCTGAGGGCAAATTCCCTTCCCCAAGGTTGTTCACCAATTTCTGTCATGGCTGGGCCAGAGGCA
3501 TCCCTGAAATITGTGCTGACTACTTCTGACCATTCTGCATAAAGCTCATCTAGGCCTCTGACCCAGACCCAAGCAAGGGTGTTGTCAGGGACAACTTGGT
3601 CCTGAACTGCTGAGATGAAGAGGGTGACATCATCTCTGACAACACCAGCAAAATCATCTTCAACAAAGTCTCTGGAGAATCCTAATCTGTCAGTCCAGAA

SfiI (3757)

3701 CTCTACAGCCCCTGCAACATCCCTTGCTGTGAGGACTGGGACTGCAGAAGTGAGTTTGGCCATGATGGCCCTCCTATAGTGAGTTGTATTATACTATGCA

3801 GATATACTATGCCAATGTTTAATTGTCAACTACCTGTT

