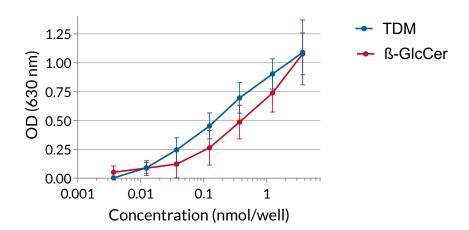
Validation data for β-GlcCer

https://www.invivogen.com/bglccer

For research use only


Version 19H05-MM

Beta-glucosylceramide (β -GlcCer) is a glycolipid that activates the macrophage-inducible C-type lectin (Mincle) receptor. Mincle is a member of the Dectin-2 family, that recognizes a variety of exogenous and endogenous stimuli, such as mycobacteria, certain fungi, and necrotic cells. β -GlcCer, an intracellular metabolite, is recognized as a damage-associated molecular pattern (DAMP) and associated with cell death.

Using InvivoGen's HEK-Blue[™] Mincle reporter cells, which co-express an NF- κ B-inducible SEAP (secreted embryonic alkaline phosphatase) reporter protein and Mincle, β -GlcCer was identified as an endogenous Mincle agonist and compared to the mycobacteria-derived trehalose-6,6-dimycolate (TDM), an extensively studied exogenous Mincle agonist¹. Stimulation of InvivoGen's HEK-Blue[™] hMincle reporter cells with β -GlcCer results in a dose-dependent induction of the NF- κ B signaling pathway (data shown below). Upon β -GlcCer recognition, Mincle interacts with the Fc receptor common γ -chain (FcR γ) triggering Syk-dependent signaling resulting in NF- κ B, NFAT, and AP-1 activation¹.

1. Nagata M. et al., 2017. Intracellular metabolite β -glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. PNAS. 114(16): F3285-F3294.

Evaluation of β-GlcCer in HEK-Blue[™] hMincle cells

Response of HEK-Blue[™] hMincle cells to β-GlcCer and TDM.

HEK-Blue[™] hMincle cells were stimulated with increasing concentrations of β -GlcCer and TDM. After overnight incubation, the NF- κ B response was determined using QUANTI-Blue[™] Solution, a SEAP detection reagent, and by reading the optical density (OD) at 630 nm.

