β-GlcCer

C24:1 Glucosyl(β) Ceramide; Mincle ligand

Catalog code: tlrl-bglcer

https://www.invivogen.com/bglccer

For research use only

Version 23F22-MM

PRODUCT INFORMATION

Contents

5 mg C24:1 Glucosyl(β) Ceramide (β-GlcCer) **Storage and stability**

- β -GlcCer is provided as a solid and shipped at room temperature. Upon receipt, store product at -20°C.

- Store resuspended product in an upright position at -20 $^{\circ}\text{C}.$ Resuspended product is stable for 6 months when properly stored.

<u>Note:</u> To avoid possible leakage or evaporation, we recommend to wrap plastic film around the lid of the vial containing the resuspended product. **Quality control**

- Purity: ≥95% (UHPLC)

- The biological activity has been tested using cellular assays.

- The absence of bacterial contamination (e.g. lipoproteins and endotoxins) has been confirmed using HEK-Blue[™] TLR2 and HEK-Blue[™] TLR4 cells.

DESCRIPTION

Beta-glucosylceramide (β -GlcCer) is a naturally occurring glycolipid that specifically activates the macrophage-inducible C-type lectin (Mincle) receptor¹. Mincle is a member of the Dectin-2 family, that recognizes a variety of exogenous and endogenous stimuli, such as mycobacteria and necrotic cells. $\beta\mbox{-}GlcCer$ is an endogenous metabolite which is recognized as a damage-associated molecular pattern (DAMP) and associated with cell death^{1,2}. In healthy individuals, β -GlcCer is located in the endoplasmic reticulum/Golgi apparatus. Following cell damage, it is released into the extracellular milieu where it acts as a signal of cell damage. Of note, the accumulation of β -GlcCer within cells is believed to cause systemic inflammation in Gaucher disease¹. Using InvivoGen's HEK-Blue[™] Mincle reporter cells, β -GlcCer was established as an endogenous Mincle agonist¹. Upon β -GlcCer recognition, Mincle interacts with the Fcreceptor common γ -chain (FcR γ) triggering Syk-dependent signaling resulting in NF- κ B, NFAT, and AP-1 activation. Due to its pro-inflammatory activity, β -GlcCer has been identified as a potential adjuvant for vaccination against infectious diseases and cancer¹.

1. Nagata M. *et al.*, 2017. Intracellular metabolite β -glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. PNAS. 114(16): E3285-E3294. 2. Ishikawa A. *et al.*, 2019. Essential roles of C-type lectin Mincle in induction of neuropathic pain in mice. Sci Rep. 9(1):872.

CHEMICAL PROPERTIES

CAS number: 887907-50-8 Chemical name: C24:1 Glucosyl(β) Ceramide (d18:1/24:1(15Z)) Formula: C₄₈H₉₁NO₈ Molecular weight: 810.24 g/mol Solubility: 5 mg/ml isopropanol Chemical structure: P_{μ}

HO OH HN

TECHNICAL SUPPORT InvivoGen USA (Toll-Free): 888-457-5873 InvivoGen USA (International): +1 (858) 457-5873 InvivoGen Europe: +33 (0) 5-62-71-69-39 InvivoGen Asia: +852 3622-3480 E-mail: info@invivogen.com

Ôн

METHODS

Preparation of stock suspension (5 mg/ml)

- Add 1 ml of isopropanol (not provided) to 5 mg of β -GlcCer.
- Heat at 60°C for 1 minute, sonicate for 20 seconds, and then vortex until completely dissolved.
- Use immediately or store at -20°C.
- Following storage at -20 °C, allow to reach room temperature and vortex before use.
- Prepare dilutions with isopropanol.

Working concentration: 1-10 µg/ml

Mincle activation by β -GlcCer using cellular assays

β-GlcCer-induced activation can be studied using HEK-Blue[™] Mincle reporter cells, which are HEK293-derived cells stably transfected with the Mincle gene and other genes of the Mincle-NF-κB signaling pathway. They also stably express an NF-κB-inducible secreted embryonic alkaline phosphatase (SEAP) reporter gene. Mincle activation is assessable by measuring SEAP activity, using QUANTI-Blue[™] Solution, a SEAP detection reagent.

For more information visit: <u>https://www.invivogen.com/hek-blue-clr</u>.

Day 1

- 1. Dispense 20 μ l of the β -GlcCer suspension at various concentrations
- (1-10 µg/ml final concentration) per well of a 96-well plate.

2. Ensure that the $\beta\text{-GlcCer}$ suspension is evenly distributed on the surface of the well.

- 3. Allow to dry for 1 hour at room temperature (15-25 °C).
- 4. Prepare a cell suspension (~280,000 cells per ml) and add 180 μl of
- this suspension (~50,000 cells) to each $\beta\text{-}GlcCer\text{-}containing well.}$
- 5. Incubate the cells for 20-24 hours at 37 $^{\circ}\text{C}$ and 5% CO_2.

Day 2

1. Prepare QUANTI-Blue^{\mathbf{M}} Solution following the instructions on the data sheet.

2. Add 180 μl of QUANTI-Blue $^{\scriptscriptstyle \rm M}$ Solution to each well containing 20 μl of supernatant.

- 3. Incubate the plate at 37 °C for 30 minutes to 6 hours.
- 4. Determine SEAP levels using a spectrophotometer at 620-655 nm.

RELATED PRODUCTS

Product	Description	Cat. Code
HEK-Blue [™] hMincle	Mincle reporter cells	Inquire
HEK-Blue [™] mMincle	Mincle reporter cells	hkb-mmcl
GlcC ₁₄ C ₁₈	Mincle ligand	tIrI-gcc
TDB (Trehalose-6,6-dibehenate)	Mincle ligand	tIrI-tdb
QUANTI-Blue [™] Solution	SEAP detection reagent	rep-qbs

