PRODUCT INFORMATION

Contents and Storage
- 1 vial of 293XL-hTLR9-HA Cells (5-7 x 10^6 cells) in Freezing Medium

IMPORTANT: Cells are shipped frozen. If cells are not frozen upon arrival, contact InvivoGen immediately.
- 100 µl Blasticidin selective antibiotic (10 mg/ml). Store at -20°C. Product is stable for 1 year when stored at -20°C.
- 1 ml Normocin™ (50 mg/ml). Normocin™ is a formulation of three antibiotics active against mycoplasmas, bacteria and fungi. Store at -20°C. Product is stable for 18 months when stored at -20°C.

PRODUCT DESCRIPTION

293XL-hTLR9-HA cells are designed for studying the stimulation of human TLR9 (hTLR9). 293XL-hTLR9-HA cells were obtained by co-transfection of the human antiapoptotic Bcl-XL gene and the hTLR9 gene fused at the 3’end to the influenza hemagglutinin (HA) tag. This tag is the epitope of a very efficient and specific monoclonal antibody. The use of human HA-tagged hTLR9 provides a simple and convenient method to detect the expression of the hTLR9 by Western blot using an anti-HA tag antibody. Addition of the HA tag has no deleterious effect on the expression and function of the hTLR9. HEK293 cells express endogenous levels of TLR3, TLR5, and NOD1. Note: The control cell line for 293XL-hTLR9-HA cells is 293XL/null cells (which do not express hTLR9).

TLR9 is expressed in the endoplasmic reticulum (ER) of resting cells in contrast to most TLRs that are located on the plasma membrane. TLR9 recognizes specific unmethylated CpG-ODN sequences, that distinguish bacterial DNA from mammalian DNA. TLR9 engages an intracellular pathway that involves MyD88 leading to NF-κB translocation. TLR9 recognizes different CpG motifs; the optimal sequences being GTCGTT and GACGTT for hTLR9 and mTLR9 respectively. TLR9 binds directly to CpG DNA and recognizes specifically CpG DNA that is unmethylated and single stranded. Stimulation of TLR9 triggers a signaling cascade leading to the activation of the transcription factor NF-κB and the production of pro-inflammatory cytokines such as IL-8.


Handling Cells Upon Arrival

We strongly recommend that you propagate the cells, using the provided procedure, as soon as possible. This will ensure the best cell viability and assay performance. Frozen cells may be placed in liquid nitrogen until you are ready to thaw and propagate them, however, this may reduce cell viability.

Product Warranty
InvivoGen warrants that cells shall be viable upon shipment from InvivoGen for a period of thirty days, provided they have been properly stored and handled during this period.

Cell Line Stability
Cells will undergo genotypic changes resulting in reduced responsiveness over time in normal cell culture conditions. Genetic instability is a biological phenomenon that occurs in all stably transfected cells. Therefore, it is critical to prepare an adequate number of frozen stocks at early passages.

293XL-hTLR9-HA cells should not be passaged more than 20 times to remain fully efficient. 293XL-hTLR9-HA cells should be maintained in Growth Medium as described below in the presence of Normocin™ (100 µg/ml) and the selective antibiotic, Blasticidin (10 µg/ml). Antibiotic pressure with Blasticidin is required to maintain the plasmid coding for HA tagged hTLR9.

Quality control
Expression of the HA-tagged hTLR9 gene has been verified by RT-PCR and Western blot analysis. These cells were stimulated with various TLR9 Ligands. These cells are guaranteed mycoplasma-free.

USE RESTRICTIONS

These cells are distributed for research purposes only. This product is covered by a Limited Use License. By use of this product, the buyer agrees the terms and conditions of all applicable Limited Use Label Licenses. For non-research use, such as screening, quality control or clinical development, contact info@invivogen.com

SAFETY CONSIDERATIONS

Biosafety Level:2

HANDLING PROCEDURES

Required Cell Culture Medium
- Growth Medium: DMEM, 4.5 g/l glucose, 10% (v/v) fetal bovine serum, 50 U/ml penicillin, 50 µg/ml streptomycin, 100 µg/ml Normocin™, 2 mM L-glutamine
- Freezing Medium: DMEM, 4.5 g/l glucose, 20% (v/v) fetal bovine serum, 50 U/ml penicillin, 50 µg/ml streptomycin, 100 µg/ml Normocin™, 2 mM L-glutamine, 10% (v/v) DMSO
Initial Culture Procedure
The first propagation of cells should be for generating stocks for future use. This ensures the stability and performance of the cells for subsequent experiments.

1- Thaw the vial by gentle agitation in a 37°C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing should be rapid.
2- Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% (v/v) ethanol.

Note: All steps from this point should be carried out under strict aseptic conditions.
3- Transfer cells in a larger vial containing 15 ml of pre-warmed Growth Medium. Do not add selective antibiotics until the cells have been passaged twice.
4- Centrifuge vial at 1000-1200 RPM (RCF 200-300 g) for 5 minutes.
5- Remove supernatant containing the cryoprotective agent and resuspend cells with 1 ml of Growth Medium without selective antibiotics.
6- Transfer the vial contents to a 25 cm² tissue culture flask containing 5 ml of Growth Medium without selective antibiotics.
7- Place the culture at 37°C in 5% CO₂.

Frozen Stock Preparation
1- Resuspend cells at a density of 5-7 x 10⁵ cells/ml in Freezing Medium freshly prepared with cold Growth Medium.
Note: A T-75 culture flask typically yields enough cells for preparing 3-4 frozen vials.
2- Aliquot 1 ml cells into cryogenic vials.
3- Place vials in a freezing container (Nalgene) and store at -80°C overnight.
4- Transfer vials to liquid nitrogen for long term storage.
Note: If properly stored, cells should remain stable for years.

Cell maintenance
1- Maintain and subculture the cells in growth medium supplemented with 10 µg/ml Blasticidin.
2- Renew growth medium 2 times a week.
3- Cells should be passaged when a 70-80% confluency is reached, detach the cells in presence of PBS by tapping the flask or by using a cell scraper. Do not let the cells grow to 100% confluency.
Note: The response of 293XL-hTLR9-HA cells can be altered by the action of trypsin. Do not use trypsin to detach 293XL-hTLR9-HA cells.

TLR9 Stimulation
TLR9 stimulation can be assessed by determining the levels of IL-8 using an ELISA kit or by measuring the activation of NF-κB. InvivoGen has developed a simple and convenient method to evaluate TLR stimulation through NF-κB activation based on the use of an NF-κB-inducible SEAP reporter system (pNiFty-SEAP) and QUANTI-Blue™, a SEAP detection medium. Alternatively, InvivoGen provides HEK-Blue™ hTLR9 cells (cat. code hkb-htl9), a SEAP reporter cells line expressing the hTLR9 gene. Determine SEAP levels using a spectrophotometer at 620-655 nm.

Day 1: Transfection of 293XL-hTLR9-HA cells with pNiFty-SEAP
1- Prepare pNiFty-SEAP/LyoVec™ complexes following the instructions provided in the technical data sheet of LyoVec™.
Note: If using another transfection reagent, perform transfection according to the manufacturer’s recommendations.
2- Seed 50,000 cells per well of a flat-bottom 96-well plate in 200 µl Growth Medium.
3- Add 10 µl of pNiFty(2)-SEAP/LyoVec™ complexes per well.
4- Incubate the plate at 37°C in a CO₂ incubator for 20-24 h.

Day 2: TLR9 Stimulation
- Remove medium and replace with 180 µl of fresh Growth Medium which contains 10% (v/v) heat-inactivated FBS.
Note: Some fetal bovine serum (FBS) may contain alkaline phosphatases that can interfere with SEAP quantification. To ensure that these thermosensitive enzymes are inactive, use heat-inactivated FBS (30 min at 56°C). Heat-inactivated FBS is also commercially available.
- Add 20 µl of each sample per well of a 96-well plate.
- Add 20 µl of a positive control (such as ODN 2006, 100 µg/ml) in one well.
- Add 20 µl of a negative control (such as sterile, endotoxin-free water) in one well.
- Incubate the plate at 37°C in a CO₂ incubator for 20-24 h.

Day 3: Detection and Quantification of SEAP
- Prepare QUANTI-Blue™ following the instructions on the pouch.
- Add 180 µl of resuspended QUANTI-Blue™ per well of a 96-well plate.
- Add 20 µl of induced 293XL-hTLR9-HA cells supernatant.
- Incubate the plate at 37°C incubator for 1-3 h.
- Determine SEAP levels using a spectrophotometer at 620-655 nm.
Note: For faster reading or high-throughput applications we recommend the use of the one-step HEK-Blue™ Detection growth medium. This medium allows for the combined growth of your cells and reading of SEAP activity.

Specificity of 293XL-hTLR9-HA Cells
As HEK293 cells express endogenous levels of TLR3, TLR5, and NOD1, 293XL-hTLR9-HA cells will respond to TLR3, TLR5 and NOD1 ligands. To ensure the specificity of the hTLR9 activation, we recommend that you perform experiments with the control cell line 293-null cells. This will avoid misleading results, due to direct activation of NF-κB via a non-hTLR9 pathway (e.g. TNFα activation of NF-κB).

RELATED PRODUCTS

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Catalog Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blasticidin (100 mg)</td>
<td>ant-bl-1</td>
</tr>
<tr>
<td>Normocin™</td>
<td>ant-nr-1</td>
</tr>
<tr>
<td>293XL-null (Control cell line)</td>
<td>293xl-null</td>
</tr>
<tr>
<td>Anti-IA Tag Antibody</td>
<td>ab-hatag</td>
</tr>
<tr>
<td>pNiFty2-SEAP (NF-κB inducible reporter plasmid)</td>
<td>pniify2-seap</td>
</tr>
<tr>
<td>LyoVec™ (Transfection reagent)</td>
<td>lyecc-1</td>
</tr>
<tr>
<td>QUANTI-Blue™ (5 pouches)</td>
<td>rep-qb1</td>
</tr>
<tr>
<td>HEK-Blue™ Detection (2 pouches)</td>
<td>hbd-det1</td>
</tr>
<tr>
<td>ODN2006 (hTLR9 ligand)</td>
<td>tlr-hodnb</td>
</tr>
<tr>
<td>ODN2006 Control (Negative control)</td>
<td>tlr-hodnbce</td>
</tr>
<tr>
<td>ODN2006 FITC (labeled hTLR9 ligand)</td>
<td>tlr-fhtdbn</td>
</tr>
<tr>
<td>ODN2006 Biotin (labeled hTLR9 ligand)</td>
<td>tlr-bhtdbn</td>
</tr>
</tbody>
</table>

TECHNICAL SUPPORT
Toll free (US): 888-457-5873
Outside US: (+1) 858-457-5873
Europe: +33 562-71-69-39
E-mail: info@invivogen.com
Website: www.invivogen.com