PRODUCT INFORMATION

Contents
• 1 vial of HeLa-Difluo™ hLC3 Cells (3-7 x 10⁶ cells)

IMPORTANT: Cells are shipped frozen. If cells are not frozen upon arrival, contact InvivoGen immediately.
• 100 µl Zeocin™ (100 mg/ml), Store Zeocin™ at 4 °C or at -20 °C.*
• 1 ml Normocin™ (50 mg/ml), Normocin™ is a formulation of three antibiotics active against mycoplasmas, bacteria and fungi. Store at -20 °C.*
*The expiry date is specified on the product label.

Handling Cells Upon Receipt
Cells must be thawed immediately upon receipt and grown according to handling procedures (as described on the next page), to ensure cell viability and proper assay performance.
Note: Do not freeze the cells upon receipt as it may result in irreversible damage to the cell line.
Disclaimer: We cannot guarantee cell viability if the cells are not thawed immediately upon receipt and grown according to handling procedures.

Cell Line Stability
Genetic instability is a biological phenomenon that occurs in all stably transfected cells. Cells will undergo genotypic changes resulting in reduced responsiveness over time in normal cell culture conditions. Therefore, it is critical to prepare an adequate number of frozen stocks at early passages.

To ensure maximum efficiency, do not passage HeLa-Difluo™ hLC3 cells more than 20 times. HeLa-Difluo™ hLC3 cells should be maintained in growth medium supplemented with the selection antibiotic Zeocin™ (100 µg/ml).

Quality Control
• HeLa-Difluo™ hLC3 cells have been tested for their ability to respond to autophagic inducers.
• The stability of this cell line for 20 passages following thawing has been verified.
• HeLa-Difluo™ hLC3 cells are guaranteed mycoplasma-free.

USE RESTRICTIONS
These cells are distributed for research purposes only.
This product is covered by a Limited Use License. By use of this product, the buyer agrees to the terms and conditions of all applicable Limited Use Label Licenses. For non-research use, such as screening, quality control or clinical development, contact info@invivogen.com

BACKGROUND

Autophagy is an essential, homeostatic process by which cytoplasmic materials are degraded in lysosomes. This multi-step process involves isolation of cargo within membranes, autophagosome formation, fusion with lysosomes, degradation and recycling of cargo contents. One key protein used to study this ‘autophagic flux’ is LC3B (microtubule-associated protein 1 light chain 3). This protein is recruited from the cytosol, matured and bound to the isolation membrane. This localization serves as a marker for autophagomic membranes and for monitoring the process as it develops. Chimeric proteins consisting of LC3B fused to a green fluorescent protein (GFP) and a red fluorescent protein (RFP) provide a simple means of monitoring the autophagic process. Autophagosomes marked by an RFP::GFP::LC3 show both RFP and GFP signals. After fusion with lysosomes, GFP signal is significantly reduced due to acidic conditions, while RFP signal remains relatively stable.

CELL LINE DESCRIPTION

HeLa-Difluo™ hLC3 cells are autophagy reporter cells derived from the HeLa human epithelial carcinoma cell line. They express an RFP::GFP::LC3 fusion protein, in which the N-terminus of human LC3B is fused to two fluorescent reporter proteins: a RFP (acid-stable) and a GFP (acid-sensitive). In these cells, the RFP-GFP pair enables monitoring of autophagic flux in real-time by detecting the appearance of dual fluorescent red and green RFP::GFP::LC3 puncta or single fluorescent red RFP::LC3 puncta by fluorescence microscopy. Early in autophagy, both RFP and GFP signals are detected. As the fusion of the autophagosomes with the lysosomes progresses, the GFP fluorescence diminishes, leaving only the RFP fluorescence visible. The percentages of RFP-GFP positive and of RFP positive cells can be determined and these values can be used to assess autophagic flux, using methods described previously1, 2.

HeLa-Difluo™ hLC3 cells are resistant to Zeocin™.

SAFETY CONSIDERATIONS

Biosafety Level

HeLa-Difluo™ hLC3 cells were derived from HeLa cells, which contain the human papilloma virus, and thus may require Biosafety Level 2. The biosafety level varies by country. In the United States, HeLa cell lines are designated Biosafety Level 2 according to the Center for Disease Control and Prevention (CDC). In Germany, HeLa cell lines are designated Biosafety Level 1 according to the Central Committee of Biological Safety, Zentrale Kommission für die Biologische Sicherheit (ZKBS). Please check with your country’s regulatory authority regarding the use of these cells.

HANDLING PROCEDURES

Required Cell Culture Medium

- Growth Medium: DMEM, 4.5 g/l glucose, 2 mM L-glutamine, 10% (v/v) fetal bovine serum (FBS), 100 µg/ml Normocin™, Pen-Strep (100 U/ml-100 µg/ml)
- Test Medium: DMEM, 4.5 g/l glucose, 2 mM L-glutamine, 10% (v/v) heat-inactivated FBS (30 min at 56°C), Pen-Strep (100 U/ml-100 µg/ml)
- Freezing Medium: DMEM with 20% (v/v) FBS and 10% (v/v) DMSO

Note: Heat-inactivated FBS is also commercially available.

Required Selection Antibiotic

- Zeocin™

Initial Culture Procedure

The first propagation of cells should be for generating stocks for future use. This ensures the stability and performance of the cells for subsequent experiments.

1. Thaw the vial by gentle agitation in a 37°C water bath. To reduce the possibility of contamination, keep the O-ring and cap out of the water. Thawing should be rapid.
2. Remove the vial from the water bath as soon as the contents are thawed, and decontaminate by dipping in or spraying with 70% (v/v) ethanol.
3. Transfer cells into a larger vial containing 15 ml of pre-warmed growth medium. Do not add selective antibiotics until the cells have been passaged twice.
4. Centrifuge vial at 1000-1200 RPM (RCF 200-300 g) for 5 minutes.
5. Remove supernatant containing the cryoprotective agent and resuspend cells with 1 ml of growth medium without selective antibiotics.
6. Transfer the vial contents to a 25 cm² tissue culture flask.
7. Place the flask containing cells at 37°C in 5% CO2.

Frozen Stock Preparation

1. Resuspend cells at a density of 5-7 x 10⁶ cells/ml in freezing medium freshly prepared with cold DMEM.
2. Aliquot 1 ml cells into cryogenic vials.
3. Place vials in a freezing container and store at -80 °C overnight.
4. Transfer vials to liquid nitrogen for long term storage.

Cell Maintenance

1. Maintain and subculture the cells in growth medium supplemented with 100 µg/ml of Zeocin™.
2. Renew growth medium twice a week.
3. Cells should be passaged when a 70-80% confluency is reached. Do not let the cell grow to 100% confluency.

Induction of HeLa-Difluo™ hLC3 cells

Day 1

1. Prepare a HeLa-Difluo™ hLC3 cell suspension at ~100,000 cells/ml in test medium.

Notes:
- Test medium contains heat-inactivated FBS and does not contain Normocin™.
- Prior to treatment, HeLa-Difluo™ hLC3 cells display some RFP-LC3 puncta and rare GFP-LC3 puncta due to basal autophagy that occurs constitutively during cell propagation.
- It is important that the cells are <80% confluent to limit basal autophagy.
2. Add 500 µl of cell suspension (~50,000 cells) per well of a 24-well plate.
3. Incubate overnight at 37°C in a 5% CO2 incubator.

Day 2

1. Remove test medium and gently rinse cells with pre-warmed, sterile phosphate buffered saline (PBS; pH 7.4).
2. Add 450 µl of test medium to every well of a 24-well plate.
3. Add 50 µl of test compound (autophagy inducer or inhibitor) per well, include a positive control (e.g. rapamycin at a final concentration of 25 µM) and sterile PBS as a negative control.
4. Incubate at 37°C.
5. Monitor the autophagic flux at different time intervals (e.g. after 30 min, 1h, 2h30 and 5h) using a high-resolution fluorescent microscope with the appropriate optical filters (see Spectral properties for GFP and RFP below).

Notes:
- For better visualization of the autophagic flux, rinse the cells to remove the autophagy inducer when autophagy has reached its peak (e.g. 4 h for 25 µM rapamycin).
- To enable the measurement of the average size and number of puncta per cell, image analysis software can be used if desired.

Optional: To preserve cells at a certain time point in the autophagic flux, it is possible to fix cells using the methanol-acetone method, however some fluorescent dye leakage may occur.

Typical results of autophagic flux

<table>
<thead>
<tr>
<th>Fluorescent puncta</th>
<th>Basal level</th>
<th>Autophagosome</th>
<th>Autolysosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFP::GFP::LC3</td>
<td>+/-</td>
<td>+++</td>
<td>+/-</td>
</tr>
<tr>
<td>RFP::LC3</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Spectral properties of GFP

Excitation λ max: 480 nm
Emission λ max: 505 nm

Spectral properties of RFP

Excitation λ max: 555 nm
Emission λ max: 584 nm

RELATED PRODUCTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Cat. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everolimus</td>
<td>Autophagy inducer</td>
<td>ttrl-eve</td>
</tr>
<tr>
<td>LY294002</td>
<td>Autophagy inhibitor</td>
<td>ttrl-ly29</td>
</tr>
<tr>
<td>Metformin</td>
<td>Autophagy inducer</td>
<td>ttrl-metf</td>
</tr>
<tr>
<td>Rapamycin</td>
<td>Autophagy inducer</td>
<td>ttrl-rap</td>
</tr>
<tr>
<td>RAW-Difluo mLc3</td>
<td>Autophagy reporter cells</td>
<td>rawdf-mlc3</td>
</tr>
<tr>
<td>Wortmannin</td>
<td>Autophagy inhibitor</td>
<td>ttrl-wtm</td>
</tr>
<tr>
<td>Zeocin™</td>
<td>Selection antibiotic</td>
<td>ant-zn-1</td>
</tr>
</tbody>
</table>