A549-Dual™ Cells

A549-Dual™ cells are adherent epithelial cells that have been derived from the human A549 lung carcinoma cell line by stable integration of two inducible reporter constructs. The A549 cell line is a well-characterized cellular model for asthma, allergies and respiratory infections.

A549-Dual™ cells express a secreted embryonic alkaline phosphatase (SEAP) reporter gene under the control of the IFN-β minimal promoter fused to five NF-κB binding sites.

A549-Dual™ cells also express the Lucia luciferase gene, which encodes a secreted luciferase, under the control of an ISG54 minimal promoter in conjunction with five IFN-stimulated response elements.

As a result, A549-Dual™ cells allow to simultaneously study the NF-κB pathway, by assessing the activity of SEAP, and the interferon regulatory factor (IRF) pathway, by monitoring the activity of Lucia luciferase.
Both reporter proteins are readily measurable in the cell culture supernatant when using QUANTI-Blue™, a SEAP detection reagent, and QUANTI-Luc™, a Lucia luciferase detection reagent.

Figures for this product

NF-κ Ba549 dual irf INDUCTION (Lucia luciferase reporter)


Antibiotic resistances: Zeocin™, blasticidin

Guaranteed mycoplasma-free

Shipped on dry ice

Quality Control
- The stability of this cell line for 20 passages following thawing has been verified.
- For each lot, proper activation of the NF-κB pathway and IRF pathway is confirmed upon stimulation of A549-Dual™ cells by various pathogen associated molecular patterns (PAMPs) known to activate these pathways.

These products are covered by a Limited Use License (See Terms and Conditions).


• 1 vial of A549-Dual™ cells (3-7 x 106 cells) in Freezing Medium
• 100 μl Zeocin™ (100 mg/ml)
• 100 μl Blasticidin (10 mg/ml)
• 1 ml Normocin™ (50 mg/ml)
• 1 pouch of QUANTI-Blue™
• 1 pouch of QUANTI-Luc™


A549-Dual™ cells express numerous pattern recognition receptors (PRRs), including the RIG-I-like receptor (RLR) RIG-I [1, 2], and the Toll-like receptors (TLRs) TLR2 [3], TLR3 [4, 5] and TLR5 [6] but not TLR4 [3].

Upon recognition of their cognate PAMPs, these receptors induce signaling pathways leading to the activation of the transcription factors NF-kB and/or IRF3/7. Stimulation of A549-Dual™ cells with the following PAMPs, Pam3CSK4 (TLR2) Poly(I:C) (TLR3), flagellin (TLR5), leads to the activation of NF-kB. IL-1b or TNF-a can be used as positive controls to activate the NF-kB signaling pathway.
Stimulation with RLR ligands, such as transfected poly(I:C) or poly(dA:dT), or the STING agonist, 2’3’-cGAMP, triggers the IRF pathway. IFN-a can be used as positive controls to activate the IRF signaling pathway.

A549-Dual™ cells are resistant to the selectable markers blasticidin and Zeocin™.

1. Kolokoltsova OA. et al., 2014. RIG-I enhanced interferon independent apoptosis upon Junin virus infection. PLoS One. 9(6):e99610.
2. Hagmann CA. et al., 2013. RIG-I detects triphosphorylated RNA of Listeria monocytogenes during infection in non-immune cells. PLoS One. 8(4):e62872.
3 Slevogt H. et al., 2007. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cell Microbiol. 9(3):694-707.
4. Taura M. et al., 2008. p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol Cell Biol. 28(21):6557-67.
5. Tissari J. et al., 2015. IFN-alpha enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expression J Immunol. 174(7):4289-94.
6. Tallant T. et al., 2004. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol. 4:33.


Recent articles using InvivoGen A549-Dual™ Cells


A549-Dual™ Cells

Description Human NF-κB-SEAP & IRF-Luc Reporter lung carcinoma
Cat. Codea549d-nfis
Unit Size3-7 x 10e6 cells
Price For price or distributor address,
please select your country
Disclaimer: Our products are provided for research purpose only. Commercial applications may require licensing from third parties.
Note that the sequence of available ORFs provided by InvivoGen can differ from a given reference Genbank record due to genetic variations and/or alternative splicing. Customers should verify that the version of a gene sold by InvivoGen is suitable for the customer needs.
Copyrights © 2011-2016 InvivoGen. All Rights Reserved. Reproduction of any materials from this site is strictly forbidden without permission for commercial use. Nonprofit use for non-commercial research and educational purposes is permitted, citation should include the URL "www.invivogen.com".